Enhanced U(VI) Removal from Groundwater Using Amide-Functionalised Biopolymer-Based Adsorbent for a Practical Solution

Sonali Seth¹, Md Rabiul Islam¹, Tanmayaa Nayak¹, Amoghavarsha Ramachandra Kini¹, Sujan Manna¹, Bijesh K. Malla¹, Ankit Nagar¹ and Thalappil Pradeep^{1,2*}

¹DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras Chennai 600036, India.

²International Centre for Clean Water, IIT Madras Research Park, Chennai 600113, India.

*E-mail: pradeep@iitm.ac.in

Tel.: +91-44 2257 4208; Fax: +91-44 2257 0545/0509

Supporting information content

Total number of pages: 19 Total number of figures: 12 Total number of tables: 2 Total number of equations: 9

Table of Contents

Supporting items	upporting items Title		
Equations used	Equations used in main text	S3-S4	
Figure S1	BET surface area plots (a) N_2 adsorption-desorption plot. (b) Pore size distribution.	S5	
Figure S2	IR spectra of CMABCH and its precursors i.e., CMC, PABA, and CH.	S6	
Figure S3	IR spectra of CMABCH, before and after treatment with various concentrations of U(VI).	S7	
Figure S4	IR spectra of standard $(UO_2(NO_3)_2.6H_2O)$.	S8	
Figure S5	IR spectra of CMABCH, before and after U(VI) adsorption, at regular time intervals.	S9	
Figure S6	Deconvoluted XPS spectra of (a) C 1s and (b) O 1s regions before and after U(VI) adsorption (bottom to top).	S10	
Figure S7	HRSEM image of CMCBACH and its corresponding elemental mapping.	S11	
Figure S8	Powder XRD of CMABCH, its precursors i.e. CMC, PABA and CH and CMABCH after U(VI) adsorption.	S12	
Figure S9	TGA of CMABCH in air and nitrogen atmospheres from room temperature to 900 °C at a scan rate of 5°C min ⁻¹ .	S13	
Figure S10	Ho's pseudo-second-order kinetic plot for the adsorption of U(VI) onto CMABCH.	S14	
Figure S11	Freundlich isotherm plot for the adsorption of U(VI) on CMABCH.	S15	
Figure S12	Removal efficiency of CMABCH when U(VI) and V(V) coexist.	S16	
Table S1	Desorption efficiencies by various eluents	S17	
Figure S13	FTIR of CMABCH after adsorption-desorption cycles	S18	
Table S2	Chemical parameters for the groundwater sample from the well in Shamshabad village, Fazilka, Punjab, India	S19	

Equation (1): The fraction (%) of U(VI) adsorbed by CMABCH at different time intervals were calculated from IR spectra using the equation below

1a
$$x(t) = \frac{\Delta A(1)}{\Delta A(2)} \times 100$$

where x(t) is the fraction of U(VI) adsorbed at time t, $\Delta A(1)$ is the difference between adsorption at specific time t and one at time 0 and $\Delta A(2)$ is the corresponding value for the difference between adsorption at time 0 and completely adsorbed U(VI). Similarly, residual U(VI) fraction in water is calculated by firstly measuring the leftover concentration of U(VI) in water through ICP-MS and then the fraction of residual U(VI) was calculated using the equation below

1b
$$y(t) = (1 - \frac{\Delta A(1)}{\Delta A(2)}) \times 100$$

where y(t) is the residual fraction of U(VI) at time t, $\Delta A(1)$ is the difference between adsorption at specific time t and one at time 0 and $\Delta A(2)$ is the corresponding value for the difference between adsorption at time 0 and completely adsorbed U(VI).

Equation (2): The maximum uptake capacity (q_e) of U(VI) was determined by the equation below

Uptake
$$(q_e) = \frac{(C_o - C_e)V}{m}$$

where q_e is the amount of U(VI) ions adsorbed per gram of adsorbent (mg/g) at equilibrium concentration, C_e is the equilibrium concentration of U(VI) in the bulk solution (mg/L), C_o is the initial U(VI) concentration (mg/L), V is the volume of solution (L) and m is the mass of adsorbent (g).

Equation (3): Ho's pseudo-second-order equation is described as

$$\frac{\mathrm{t}}{\mathrm{q}_{\mathrm{e}}} = \frac{1}{\mathrm{k}_2 \, \mathrm{q}_{\mathrm{e}}^2} + \frac{1}{\mathrm{q}_{\mathrm{e}}} \mathrm{t}$$

where q_e is the amount of U(VI) ions adsorbed per gram of adsorbent (mg/g), k_2 (g/mg/min) is the pseudo-second-order rate constant.

Equation (4): The linear form of Langmuir equation used

$$\frac{C_{e}}{q_{e}} = \frac{C_{e}}{q_{max}} + \frac{1}{bq_{max}}$$

where q_e is the amount of U(VI) ions adsorbed per gram of adsorbent (mg/g), C_e is the equilibrium concentration of U(VI) in the bulk solution (mg/L), q_{max} is the maximum surface density at monolayer coverage and b is the Langmuir adsorption constant (L/mg) related to the free energy of adsorption and $1/q_{max}$ and $1/bq_{max}$ are Langmuir constants.

Equation (5): Freundlich adsorption isotherm model was applied and the linear form of the equation used was

$$\log(q_e) = \log k_f + \frac{1}{n} \log (C_e)$$

where q_e is the amount of U(VI) ions adsorbed per gram of adsorbent (mg/g), C_e is the equilibrium concentration of U(VI) in the bulk solution (mg/L), k_f (mg/g) is the multilayer adsorption capacity and n is the empirical parameter connected with intensity of adsorption.

Equation (6): Mass intensity =

 $\frac{mass \ of \ all \ products \ used \ excluding \ water}{mass \ of \ product} \ kg/kg \ product$

Equation (7): Water intensity $(W_p) =$

 $\frac{\text{mass of all water used}}{\text{mass of product}} \, kg/kg \text{ product}$

Equation (8): Reaction mass efficiency (RME) =

 $\frac{\text{mass of product}}{\text{mass of all reactants}} \times 100\%$

Equation (9): E factor =

[Kg(raw materials) – Kg(desired product)] Kg(total product including water)

Figure S1. BET surface area (a) N_2 adsorption-desorption plot. (b) Pore size distribution.

Figure S2. IR spectra of CMABCH and its precursors i.e., CMC, PABA, and CH.

Figure S3. IR spectra of CMABCH, before and after treatment with various concentrations of U(VI) (m-50 mg, V-10 mL, pH-7).

Figure S4. IR spectra of standard $(UO_2(NO_3)_2.6H_2O)$.

Figure S3. IR spectra of CMABCH, before and after U(VI) adsorption, at regular time intervals (U(VI)_o- 5000 mg/L, m- 50 mg, V-10 mL, pH-7).

Figure S6. Deconvoluted XPS spectra of (a) C 1s and (b) O 1s regions of CMCBACH, before and after U(VI) adsorption (bottom to top). (U(VI)_o-5000 mg/L, m-50 mg, V-10 mL, pH-7).

Figure S7. HRSEM image of CMABCH and its corresponding elemental mapping $(U(VI)_{o}-5000 \text{ mg/L}, \text{m-}50 \text{ mg}, \text{V-}10 \text{ mL}, \text{pH-}7)$.

Figure S8. Powder XRD of CMABCH and its precursors, i.e. CMC, PABA and CH, and CMABCH after U(VI) adsorption (U(VI) $_0$ -5000 mg/L, m-50 mg, V-10 mL, pH-7).

Figure S9. TGA of CMABCH in air and nitrogen atmospheres from room temperature to 900 °C at a scan rate of 5°C min⁻¹.

Figure S10. Ho's pseudo-second-order kinetic plot for the adsorption of U(VI) onto CMABCH, using eq S3.

Supporting Information 11

Figure S11. Freundlich isotherm plot for the adsorption of U(VI) on CMABCH using eq S5.

Figure S12. Removal efficiency of CMABCH when U(VI) and V(V) coexist U(VI)-1000 μ g/L, V(V)-1000 μ g/L, m-30 mg, V-10 mL, pH-7).

Table S1: Desorption efficiency by various eluents

Eluents	Desorption efficiency (%)	Time (min)
HCl (100 mM)	65	180
HCl (50 mM)	98.2	90
HCl (10 mM)	98.0	90
Na ₂ CO ₃ (100 mM)	40	180

Figure S13. FTIR of CMABCH after adsorption-desorption cycles.

Table	S2:	Chemical	parameters	for	the	groundwater	sample	from	the	well	in
Shams	haba	d village, F	azilka, Punja	b, In	dia.						

Parameter	Groundwater sample
TDS	663.5 mg/L
EC	2750 μS/cm
Turbidity	3.37 NTU
pH	8.5
Total alkalinity	240 mg/L
Mg^{2+}	16.72 mg/L
Ca ²⁺	6.45 mg/L
Li ⁺	4.76 mg/L
Ba^{2+}	0.043 mg/L
Sr^{2+}	0.504 mg/L
Mn ²⁺	0.417 mg/L
Pb ²⁺	0.0004 mg/L
Cd ²⁺	0.0001 mg/L
Ni ²⁺	0.0008 mg/L
U(VI)	0.102 mg/L
F-	0.547 mg/L
Cl-	134.6 mg/L
Br	0.684 mg/L
NO ₃ -	0.709 mg/L
SO4 ²⁻	275.1 mg/L
PO ₄ ³⁻	Below detection limit