Supplementary Information

CO₂ Electroreduction to CO over Silver Nanoclusters: The Impact of Nuclearity on Synergistic Activity Modulation

Parvathy Jayan^{1#}, Arijit Jana^{2#}, Zhengyuan Li³, Rahul Kumar Sharma⁴, Vivek Yadav²,Astrid Campos Mata⁵, Ming-Husan Li⁶, Ali Shayesteh Zeraati⁷, Tomas Base⁸, Sung-Fu Hung⁶, Jingjie Wu³, Biswarup Pathak⁴, Thalappil Pradeep², Soumyabrata Roy*^{1,5}

Email: soumyar@iitk.ac.in (Soumyabrata Roy)

¹Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

²Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology (IIT) Madras, Chennai, India

³Department of Chemical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

⁴Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh. India

⁵Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, USA

⁶Department of Applied Chemistry and Centre for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

⁷Acceleration Consortium, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada

⁸Department of Syntheses, Institute of Inorganic Chemistry, The Czech Academy of Sciences, 1001 Husinec-Rez, 25068, Czech Republic.

^{*}These authors contributed equally: Parvathy Jayan, Arijit Jana

Index

1.	Instrumental details and characterization	S4
2.	Computational Detail	S5
3.	Figures	
Figure	e S1. SEM-EDS images of Ag ₂₁ NC and EDS spectra	S6
Figure	e S2. Photographic images of UV-visible samples of AgNCs in cuvettes	S6
Figure	e S3. UV-vis absorption spectra of (a) Ag ₂₂ , (b) Ag ₄₄ before loading the GDL	S6
Figure	e S4. HR-MS spectra of Ag ₂₂ and Ag ₄₄ NCs	S7
Figure	e S5. Single-crystal images of Ag ₂₁ NC and Ag ₄₂ NC	S7
Figure	e S6. TEM image of Ag NCs	S8
Figure	e S7. HAADF elemental mapping of Ag ₂₁ NC	S8
Figure	e S8. FTIR Spectra of Ag ₃₁ and Ag ₄₂	S9
Figure	e S9. HR-Elemental XPS scans and peak fitting of Ag ₂₁ NC catalysts	S9
Figure	e S10. HR-Elemental XPS scans and peak fitting of Ag ₃₁ NC catalysts	S10
Figure	e S11. HR-Elemental XPS scans and peak fitting of Ag ₄₂ NC catalysts	S10
Figure	e S12. Faradaic Efficiency (FE) of CO for Ag ₃₁ NC and Ag ₄₂ NC	S11
Figure	e S13. Electrochemical performance of Ag ₂₂ in comparison with Ag ₂₁	S11
Figure	e S14. Electrochemical performance of Ag ₄₂ in comparison with Ag ₄₄	S12
Figure	e S15. Long-term stability data of Ag ₂₁	S12
Figure	e \$16. Pre- and post-electrochemical XPS peak fitting of Ag ₂₁ NC catalyst-coated electrode.	S13
Figure	e \$17. Pre- and post-electrochemical XPS peak fitting of Ag ₃₁ NC catalyst-coated electrode.	S13
Figure	e \$18. Pre- and post-electrochemical XPS peak fitting of Ag ₄₂ NC catalyst-coated electrode.	S14
Figure	e \$19. EXAFS spectra of Ag K edge for the AgNCs post eCO ₂ R	S14
Figure	e S20. EXAFS fitting result of AgNCs at R space after eCO ₂ R	S15
Figure	e S21. Heterogeneous Active Sites Investigated for *CO and *COOH adsorption on the Ag ₂₁ cluster.	S15
Figure	e S22 . Heterogeneous Active Sites Investigated for *CO and *COOH adsorption on the Ag ₄₂ cluster.	S16
Figure	e S23. CDD plots on intermediate *COOH and CO on Ag ₂₁ and Ag ₄₂	S16
Figure	e S24. Heterogeneous Active Sites Investigated for *CO, and *COOH adsorption on the Ag ₄₄ cluster	S17
Figure	e S25. Gibbs free energy diagram of Ag ₂₁ , Ag ₄₂ , and Ag ₄₄ clusters	S17
Figure	e S26. Total and partial DOS analysis for *COOH and *CO-adsorbed Ag21 and Ag42 clusters	S18
Figure	e \$27. Subplots for total and partial density of states (DOS) for *COOH, and *CO-adsorbed on Ag ₄₂ .	S28
Figure	e S28. Subplots for total and partial density of states (DOS) for *COOH, and *CO-adsorbed on Ag21.	S19

4. Tables

Table S1. EXAFS fitting parameters of Ag NC catalyst	S19
Table S2. Comparison of eCO ₂ R performance (FE _{CO} vs potential) between Ag ₂₁ and recent catalysts.	S20
Table S3. Interaction energies E _{int} of Ag ₂₁ and Ag ₄₂ with MCT/CBDT and TPP ligands in eV units	S21
Table S4. Bader charge on different Ag atoms in Ag ₂₁ clusters	S21
Table S5 . Bader charge on different Ag atoms in Ag ₂₁ clusters	S22
5. References	S23

1. Instrumental details and characterization

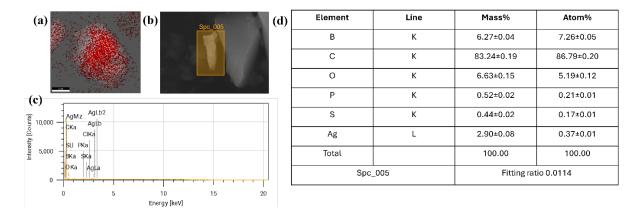
UV-vis absorption spectra of clusters were recorded using a Perkin Elmer Lambda-1050 UV-Vis-NIR spectrophotometer. The electrospray ionization mass spectra (ESI-MS) of nanoclusters (NCs) were acquired on a Waters Synapt G2Si HDMS instrument. ESI-MS instrumental parameters were maintained with the following values: capillary voltage, 2-3 kV; source temperature, 80-100 °C; flow rate, 15-20 μL/min; cone voltage, 20 V. Ag₂₁ and Ag₄₂ spectra were recorded in positive ion mode, whereas Ag₃₁ was recorded in negative mode. Fourier-transform infrared (FTIR) spectrum was collected from KBr pellets in the range of 3000 - 500 cm⁻¹ with a JASCO-4100 FT-IR spectrometer. For the spectral measurement, microcrystalline samples were positioned on top of the diamond crystal. For understanding the morphological features of silver clusters, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) have been performed on the AgNCs samples. For imaging of the clusters, SEM, JSM-6500F, JEOL, has been used. Using a field emission gun running at 200kV, the Talos F200X, JEOL, and JSM-2010F were utilized to acquire the cluster images. A cold-field emission gun and a high-angle silicon drift energy dispersive X-ray (EDX) detector for elemental mapping were incorporated with this 80 kV device.

A JEOL-3010, 300 kV device was used to measure transmission electron microscopy (TEM). The images were taken using a Gatan 794 multiscan CCD camera. For XPS (X-ray photoelectron spectroscopy) characterization studies, PHI Quantera XPS and 1486.68 eV Al Kα X-ray source were used. The shift in the binding energy due to the buildup of charges from insulating samples (mainly from organic ligands) is corrected by the carbon 1s correction. C1s, S2p, N1s, O1s, Ag3d, P2p, and B1s signals of the three different clusters were deconvoluted and fitted using the Fityk software and the Gaussian-Lorentzian function. To study and investigate the local oxidation state and coordination number to which each of the Ag atoms is bonded, XAS (X-ray Absorption Spectroscopy) was conducted at the BL01C1 beamline of TLS, NSRRC. Ag K-edge measurements (25,514 eV) were conducted in fluorescence mode. The XAS results were processed using Athena software, with normalization to the incident beam intensity. Beam energy calibration was performed at the first inflection point of the Ag absorption edge using an Ag foil as a reference.

2. Computational Details

The first principle spin-polarized calculations were performed using the Vienna *ab initio* simulation package (VASP).^[1,2] The Generalized Gradient approximation with Perdew-Burke-Ernzerhof (GGA-PBE) was employed to describe the exchange-correlations functionals and the Projector Augmented Wave (PAW) was utilized to describe the ion core and valence electron interactions.^[3,4] The cutoff energy for the plane-wave basis sets was set to 470 eV and a conjugate-gradient algorithm with an energy convergence criterion of 10⁻⁴ and Hellman-Feynman force convergence criteria of < 0.02 eVÅ⁻¹ was utilized during structural optimizations. Gaussian smearing of 0.2 eV and the DFT-D3 method were used to correctly define the van der Waals interactions.^[5] All the spin-polarized calculations were performed for all the oxygen-adsorbed intermediates and molecular species. The Gibbs free energies of elementary steps during the CO₂RR were calculated using the computational hydrogen electrode (CHE) model proposed by Nørskov and co-workers by using the following equation:^[6]

$$\Delta G = \Delta E + \Delta Z P E + T \Delta S - e U$$
 (S1)


where ΔE is the total energy change in the reaction, ΔZPE is the change in the zero-point energy, T is 300 K temperature, ΔS is the entropy change, U is the electrode potential referenced to the standard hydrogen electrode, and e is the transferred electronic charge. The ZPE and entropies were calculated from harmonic oscillator approximation using the following formula:

$$ZPE = \sum_{i} \frac{1}{2} hv_{i}$$
 (S2)

$$S_{v} = R \sum_{k_{B}T \left(exp\left(\frac{hv_{i}}{kT}-1\right)\right)} - \ln\left(1 - exp\left(\frac{hv_{i}}{kT}\right)\right)$$
(S3)

where h is the Planck constant, S_v is the vibrational entropy, R is the gas constant, k_B is the Boltzmann constant, v_i is the frequency of the i_{th} vibrational mode and $\hbar = h/2\pi$. The single molecular unit cell Ag_{21} and Ag_{42} were optimized in $30 \times 35 \times 35$ Å³, to minimize the interactions between periodic images. The Γ -centered $(1 \times 1 \times 1)$ k-point grids were considered for the sampling of the Brillouin zone considering the large size of the box. A higher $(3 \times 3 \times 3)$ k-mesh was used to calculate the density of states (DOS). Bader atomic charges were determined using the Henkelman code with the near-grid algorithm refine edge method. [7,8] All of the isosurface values for the charge density difference analysis were set to be 0.002 eV Å⁻³, where pink and blue colors gradients represent charge depletion and accumulation regions, respectively.

3. Figures

Figure S1. (a, b) SEM-EDS images of Ag_{21} NC (c) EDS spectra of Ag_{21} NC, d) All the elements present in Ag_{21} and its corresponding mass percentage and atomic percentage

Figure S2. Photographic images of UV-visible samples of a) Ag₂₁, b) Ag₃₁, c) Ag₄₂

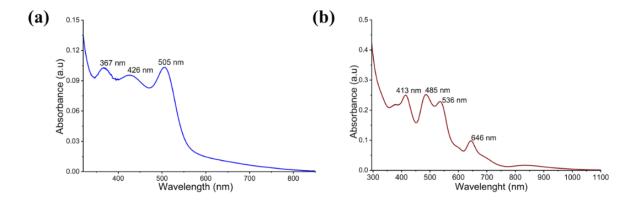
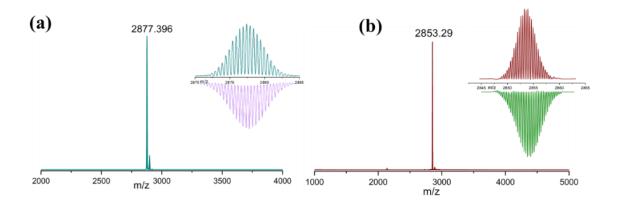
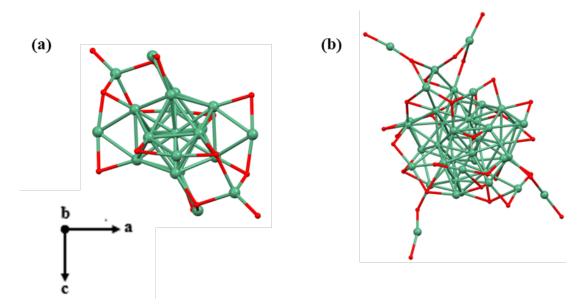




Figure S3. UV-vis absorption spectra of (a) Ag₂₂, (b) Ag₄₄ before loading the GDE

Figure S4. High-resolution mass spectrometric data of the catalyst materials before GDE loading, with inset showing the comparison of respective experimental and simulated spectra, (a) Ag_{22} (b) Ag_{44}

Figure S5. The metal core structure of (a) Ag_{21} NC (from SCXRD) (b) Ag_{42} NC (DFT optimized structure). Both structures are aligned in the direction of the b-axis. Colour code - Dark green: silver, Red: sulfur.

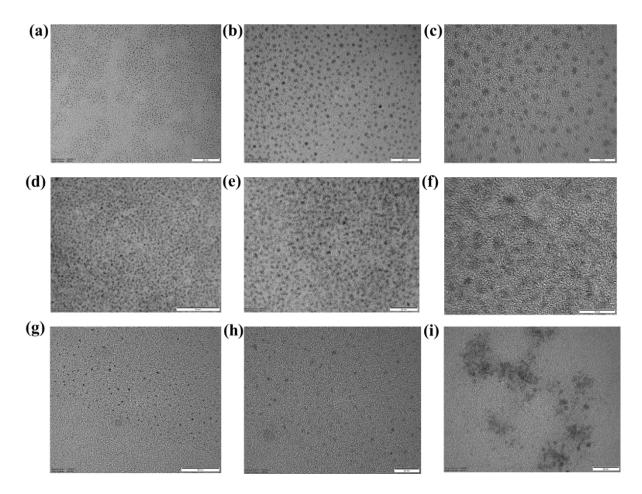


Figure S6. TEM images of Ag NCs (a-c) Ag_{21} , (d-f) Ag_{31} , (g-i) Ag_{42}

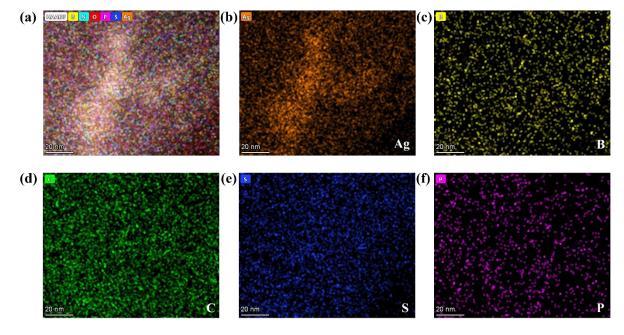


Figure S7. HAADF STEM elemental mapping of Ag₂₁ NC

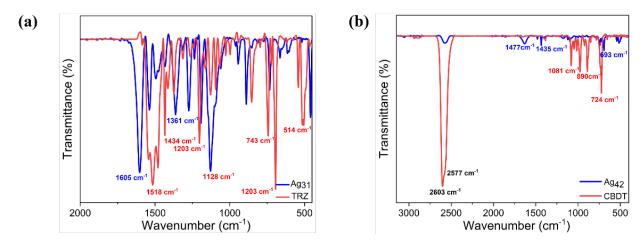
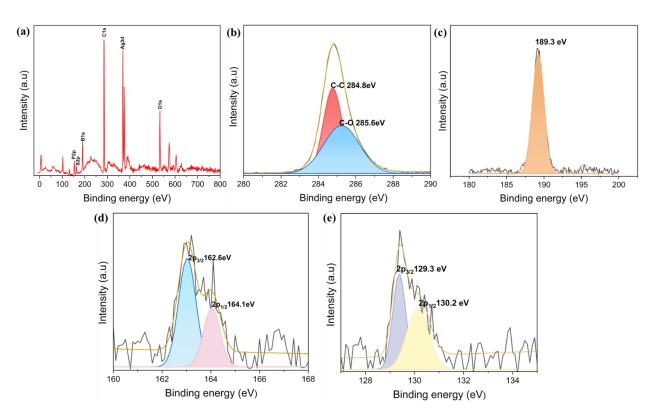
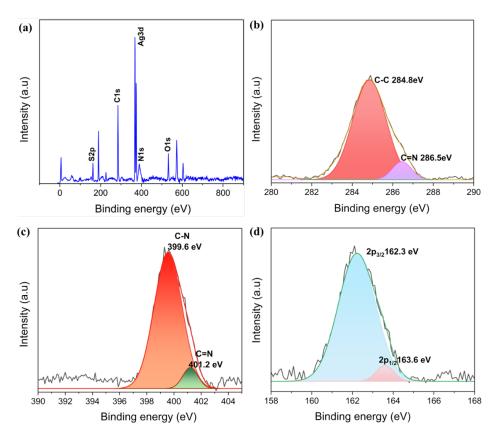
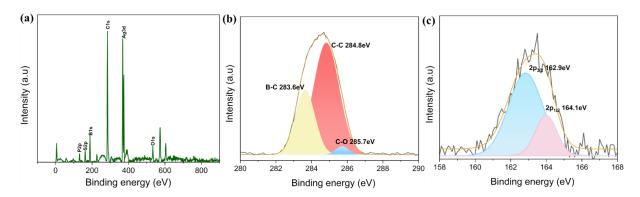
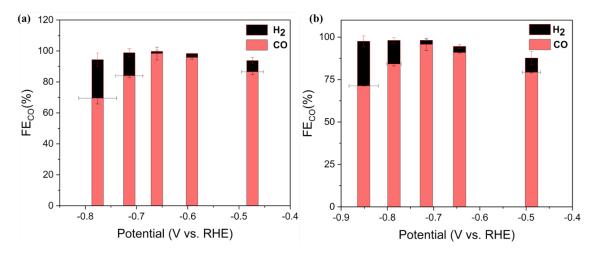
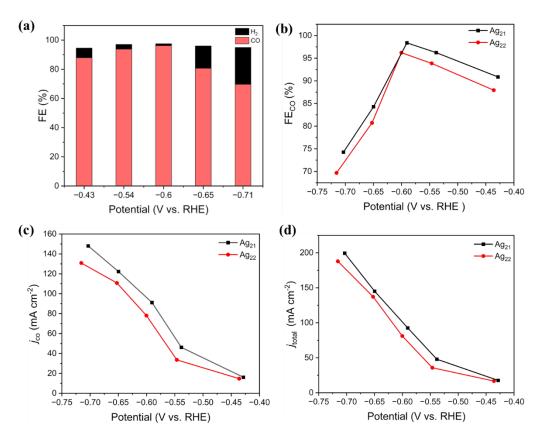
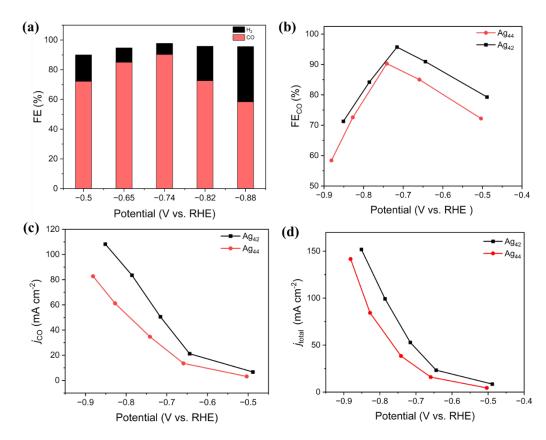




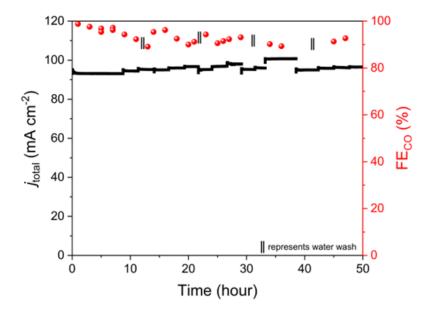
Figure S8. FTIR Spectra of (a) Ag₃₁ and TRZ, (b) Ag₄₂ and CBDT

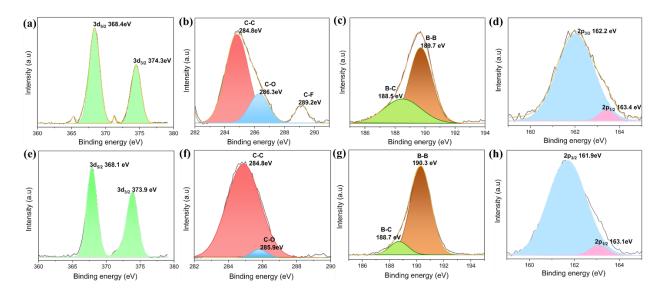
Figure S9. HR-Elemental XPS scans and peak fitting of Ag_{21} NC catalysts. (a) Full scan survey XPS (b) C1s, (c) B1s (d) S2p e) P2p

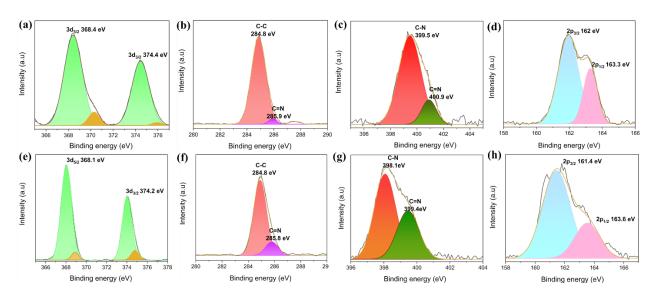
Figure S10. HR-Elemental XPS scans and peak fitting of Ag_{31} NC catalysts. (a) Full scan survey XPS b) C1s (c) N 1s, (d) S 2p


Figure S11. HR-Elemental XPS scans and peak fitting of Ag_{42} NC catalysts. (a) Full scan survey XPS (b) C 1s (c) S 2p


Figure S12. eCO₂R performance of Ag NCs in 1 M KOH in an alkaline flow cell. FE (%) of CO vs potential for (a) Ag_{31} NC (b) Ag_{42} NC


Figure S13. eCO₂R performance of Ag_{22} in 1 M KOH in an alkaline flow cell. (a) FE (%) of products with varying potential, (b) FE (%) of CO with varying potential in comparison with Ag_{21} (c) partial current density for CO across the potential range in comparison with Ag_{21} (d) (d) total current density across the potential range in comparison with Ag_{21}


Figure S14. eCO₂R performance of Ag₄₄ in 1 M KOH in an alkaline flow cell. (a) FE (%) of products with varying potential, (b) FE (%) of CO with varying potential in comparison with Ag₄₂ (c) partial current density for CO across the potential range in comparison with Ag₄₂ d) (d) total current density across the potential range in comparison with Ag₄₂

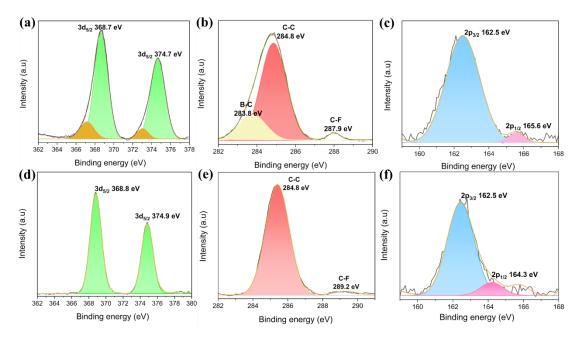

Figure S15. (e) Electrocatalytic Stability plot of Ag₂₁ measured at a constant voltage of 0.59V vs RHE for 50 hours

Figure S16. Pre- and post-electrochemical XPS peak fitting of Ag₂₁ NC catalyst-coated electrode. (a, e) Ag₃d, (b, f) C1s, (c, g) B1s, and (d, h) S2p respectively

Figure S17. Pre- and post-electrochemical XPS peak fitting of Ag_{31} NC catalyst-coated electrode. (a, e) Ag3d, (b, f) C1s, (c, g) N 1s, and (d, h) S 2p.

Figure S18. Pre- and post-electrochemical XPS peak fitting of Ag_{42} NC catalyst-coated electrode. (a, d) Ag3d, (b, e) C1s, (c, f) S2p.

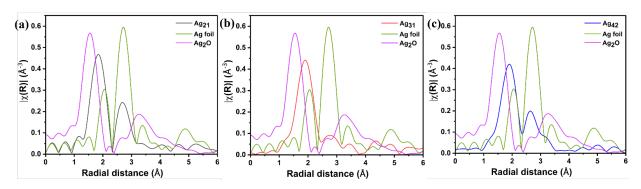


Figure S19. EXAFS spectra of Ag K edge for the AgNCs post eCO₂R

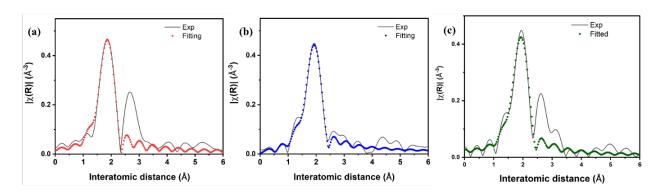


Figure S20. EXAFS fitting result of (a) Ag₂₁ NC (b) Ag₃₁ NC (c) Ag₄₂ NC at R space post eCO₂R

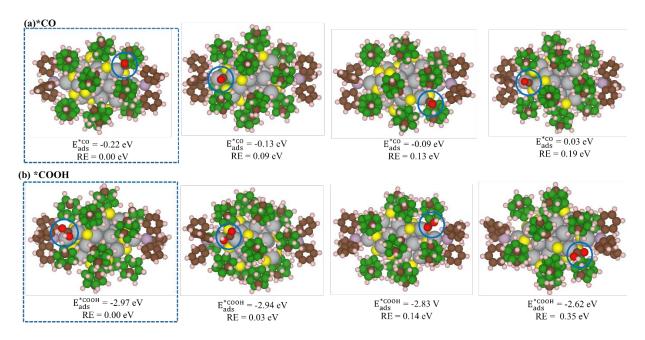
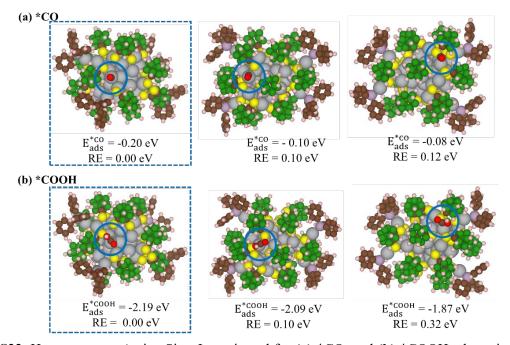
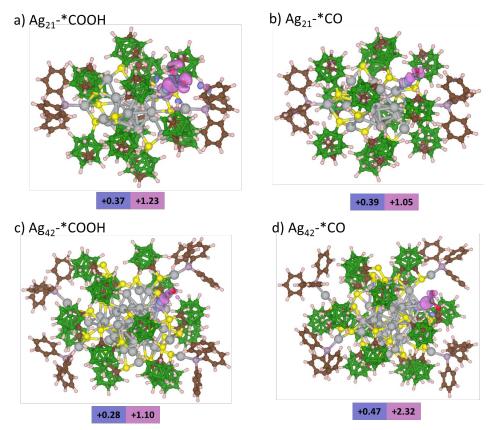
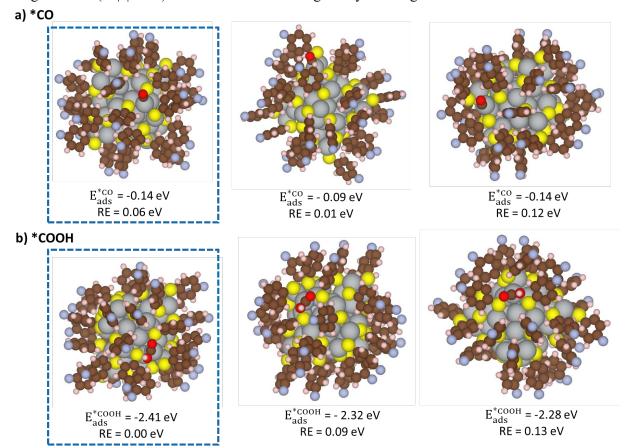
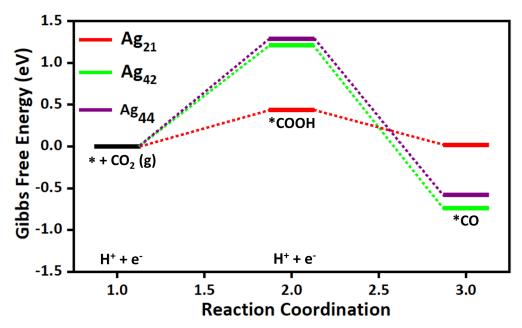
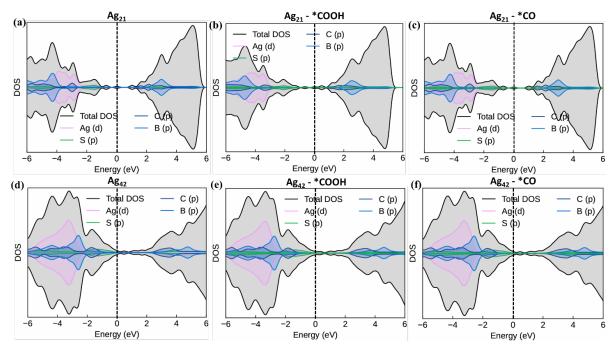
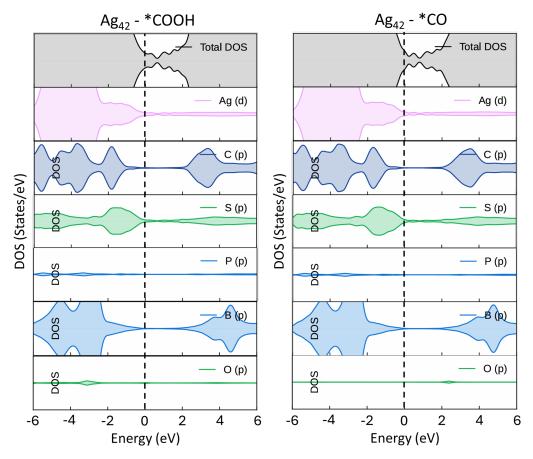


Figure S21. Heterogeneous Active Sites Investigated for (a) *CO, and (b) *COOH adsorption on the Ag₂₁ cluster, with E_{Ads}^{*COOH} representing adsorption energy in eV. The most stable configurations are highlighted with blue boxes.


Figure S22. Heterogeneous Active Sites Investigated for (a) *CO, and (b) *COOH adsorption on the Ag₄₂ cluster, with E_{Ads}^{*COOH} representing adsorption energy in eV. The most stable configurations are highlighted with blue boxes.


Figure S23: Charge density difference (CDD) plots at an isosurface of 0.002 eV/Å³, where pink and green regions indicate charge accumulation and depletion, respectively. Numeric values represent charge transfer (in |e| units) derived from Bader charge analysis on Ag and C atom.


Figure S24. Heterogeneous Active Sites Investigated for (a) *CO, and (b) *COOH adsorption on the Ag₄₄ cluster, with E_{Ads}^{*cooH} representing adsorption energy in eV. The most stable configurations are highlighted with blue boxes. The relative energies (RE) are referenced against the most stable geometries, marked as RE = 0.00 eV.

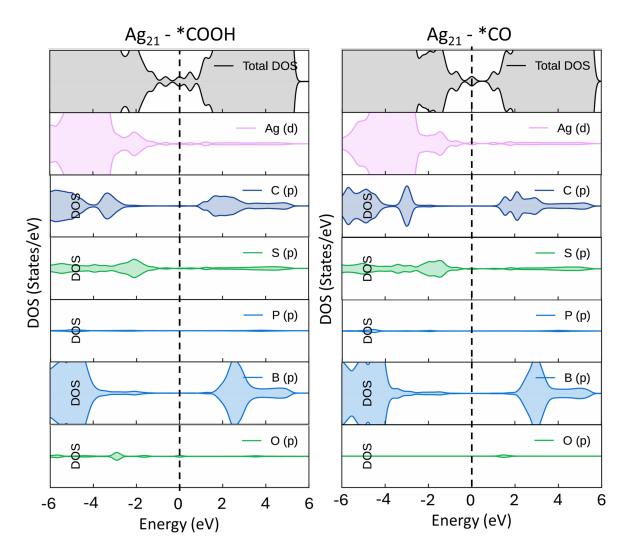

Figure S25. Gibbs free energy diagram of Ag_{21} , Ag_{42} , and Ag_{44} clusters, with the black solid horizontal line denoting the neutral surface reference.

Figure S26. Total and partial DOS analysis for pristine, *COOH, and *CO-adsorbed Ag₂₁ and Ag₄₂ clusters, with the Fermi-level set at 0.00 eV.

Figure S27. Subplots for total and partial density of states (DOS) for Ag(5d), C(p), S(p), P(p), B(p), and O(p), respectively, with the Fermi-level set at 0.00 eV for (a) *COOH, and (b) *CO-adsorbed on Ag_{42} .

Figure S28. Subplots for total and partial density of states (DOS) for Ag(5d), C(p), S(p), P(p), B(p), and O(p), respectively, with the Fermi-level set at 0.00 eV for (a) *COOH, and (b) *CO-adsorbed on Ag₂₁.

4. Tables

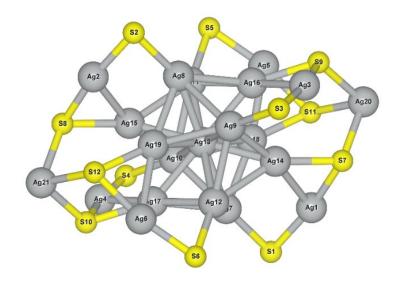
Table S1. EXAFS fitting parameters of Ag NC catalysts.

	path	N	R	dE	DW	R factor
$\mathbf{Ag_{21}}$	Ag-S	0.9 ± 0.1	2.40 ± 0.02	-0.7 ± 0.5	0.007	0.0048
Ag ₃₁ -before	Ag-S	1.1 ± 0.1	2.47 ± 0.02	-1.0 ± 0.4	0.009	0.0025
Ag ₃₁ -after	Ag-S	1.5 ± 0.3	2.46 ± 0.04	-3.2 ± 0.6	0.008	0.0081
Ag ₄₁	Ag-S	1.0 ± 0.3	2.46 ± 0.07	3.4 ± 0.9	0.009	0.0106

Table S2: Comparison between Ag₂₁ and the most advanced Ag-based catalysts (mostly reported clusters) for eCO₂R in terms of maximum partial current density (j_{CO}) and maximum Faradaic efficiency for CO (FE_{CO})

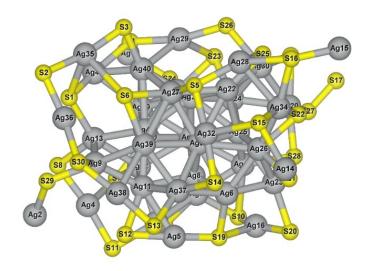
	Catalyst	Max FE _{CO} (%)	E_0 for max FE_{CO} (V vs. RHE)	Max j _{CO} (mA cm ⁻²)	Cell setup	Electrolyte	Reference
	[Ag ₂₁ (MCT) ₁₂ (TPP) ₂] ⁺	99.6	-0.59	148	Flow cell	1 M KOH	This work
X1	$Ag_{19}Cu_2(C \equiv CAr^F)_{12}(PPh_3)_6Cl_6$	95.26	-1.3	257.2	NA	1 M KOH	Nanoscale.2024;16(36):16952-7. ^[9]
X2	Ag-CP	>96	-1.0	385	Flow cell	0.1 M KHCO ₃	ACS Energy Lett. 2019, 4, 8, 2024–2031 ^[10]
Х3	NiAD/AgNPs@CN	>90	-0.88	79.7	Flow cell	0.1 M KHCO ₃	Applied Catalysis B: Environment and Energy. 2024 Jul 15;349:123886 ^[11]
X4	Ag-Zn-ZIF-8 (10% Ag, 90% Zn)	80	-0.9	9	Flow cell	0.1 M KHCO ₃	Catalysts. 2023 May 10;13(5):867. ^[12]
X5	$ClAg_{14} (C \equiv CBu)_{12}$	95	-0.5	285	Flow cell	1 M KOH	Advanced Science. 2024 Mar;11(10):2306089. ^[13]
X6	Ag ₂₅ (SPhMe ₂) ₁₈	80	~-0.65	94	Flow cell	1 М КОН	Advanced Science. 2024 Mar;11(10):2306089. ^[13]
X7	$Ag_{12}Cu_{7}(4^{t}BuPhC\equiv C)_{14}(Dpppe)_{3}Cl_{3}(SbF_{6})_{2}$	71.2	-1.17 V	117.9	Flow cell	1 M KOH	ACS Cent. Sci. 2025, 11, 8, 1428–1437 ^[14]
X8	Ag@C NPs	90	-0.55	300	Flow cell	1M KOH	Cell Reports Physical Science. 2022 Jul 20;3(7) ^[15]
X9	Ag/MWNC	>95	-0.77	338	Flow cell	1 M KOH	Journal of Materials Chemistry A. 2016;4(22):8573-8 ^[16]
X10	$Ag_{15}(C \equiv C - CH_3)^+$	~96	2V (Ag/AgCl)	92	Flow cell	1 M NaCl	J. Am. Chem. Soc. 2025, 147, 3, 2699–2713 ^[17]
X11	AuAg ₂₄ (IPBT) ₁₈	90	-3.6 (Cell Voltage)	200	MEA cell	0.5 M KHCO ₃	J Am Chem Soc. 2025 Apr 16;147(15):12546-12554. ^[18]
X12	$[Ag_{15}Cu_6(C\equiv CR)_{18}(DPPE)_2]^-$	90.6	-3.75 (Cell Voltage)	40	MEA cell	0.1 M KHCO ₃	J. Am. Chem. Soc. 2023, 145, 6, 3401–3407 ^[19]
X13	5 nm Ag/C	79.20	~-0.75	8	H- cell	0.5 M KHCO ₃	J. Am. Chem. Soc. 2015, 137, 43, 13844–13850 ^[20]
X14	Ag ₁₅ (C=C-tBu) ₁₂ ⁺	95	-0.6	~21	H-cell	0.5 M KHCO ₃	Angewandte Chemie International Edition. 2021 Dec 6;60(50):26136-
X15	$[Ag_{15}Cu_6(C\equiv CR)_{18}(DPPE)_2]^-$	91	-0.81	~18	H-cell	0.1 M KHCO ₃	J. Am. Chem. Soc. 2023, 145, 6, 3401–3407 ^[19]
X16	(AuAg) ₄₄ (C ₁₀ H ₉) ₂₈	98	-0.8	~18	H-cell	0.5 M KHCO ₃	Chem. Eur. J. 2022, 28, e202201262 ^[22]
X17	AuAg ₂₄ (IPBT) ₁₈	70	-0.6	-24.1	H-cell	0.5 M KHCO ₃	J. Am. Chem. Soc. 2025, 147, 15, 12546–12554 ^[18]
X18	PtAg ₂₄ (IPBT) ₁₈	30	□ [ي	-5.8	H-cell	0.5 M KHCO ₃	J. Am. Chem. Soc. 2025, 147, 15, 12546–12554 ^[18]
X19	Ag_1/MnO_2	95.7	- c0.85	3.4	H-cell	0.5 M KHCO ₃	Angew. Chem. Int. Ed. 2021, 60, 6170 – 6176 ^[23]
X20	2D Ag Superstructures	92.5	-0.8	6.82	H-cell	0.1 M KHCO ₃	ACS Nano 2021, 15, 4, 7682–7693 ^[24]
X21	Nanoporous Ag	92	-0.7	36	H-cell	0.5 M KHCO ₃	Nat. Commun. 5, 1-6 (2014) ^[25]
X22	Ag foil	70.5	-0.8	7	H-cell	0.5 M KHCO ₃	J. Am. Chem. Soc. 137, 13844-13850 (2015) ^[20]

Table S3. Interaction energies (E_{Int}) of Ag_{21} and Ag_{42} with MCT/CBDT and TPP ligands in eV units. The equation used to calculate the E_{Int} follows:


$$E_{Int} = \frac{E_{Complex} - [\; n_1 * \; E_{L_1} + \; n_2 * \; E_{L_2} \;]}{N}$$

where $E_{Complex}$, E_{L_1} , E_{L_2} represent the total electronic energies of Ag complex, MCT/CBDT, and TPP, respectively. And n_1 , n_2 and N represents the number of MCT/CBDT, TPP, and the total number of ligands in the Ag complexes.

Cluster	E _{Complex} (eV)	E _{L1} (eV)	$E_{L_2}(eV)$	n ₁	n_2	N	E _{Int} (eV)
Ag_{21}	-2088.40	-124.72	-222.31	12	2	14	-10.54
Ag ₄₂	-2971.57	-117.82	-222.36	15	4	19	-16.57


Table S4. Bader charge on different Ag atoms in Ag₂₁ clusters, with its core geometry represented below.

Atom	Charge	Atom	Charge	Atom	Charge
Ag1	0.31	Ag8	0.13	Ag15	0.10
Ag2	0.31	Ag9	0.13	Ag16	0.10
Ag3	0.32	Ag10	0.13	Ag17	0.10
Ag4	0.32	Ag11	0.13	Ag18	0.10
Ag5	0.32	Ag12	0.13	Ag19	0.10
Ag6	0.32	Ag13	0.01	Ag20	0.32
Ag7	0.13	Ag14	0.10	Ag21	0.32

Table S5. Bader charge on different Ag atoms in Ag_{42} clusters, with its core geometry represented below.

Atom	Charge	Atom	Charge	Atom	Charge
Ag1	0.28	Ag15	0.30	Ag29	0.36
Ag2	0.27	Ag16	0.35	Ag30	0.31
Ag3	0.19	Ag17	0.18	Ag31	0.06
Ag4	0.32	Ag18	0.18	Ag32	0.35
Ag5	0.33	Ag19	0.03	Ag33	0.00
Ag6	0.18	Ag20	0.32	Ag34	0.34
Ag7	0.26	Ag21	0.01	Ag35	0.38
Ag8	0.08	Ag22	0.17	Ag36	0.38
Ag9	0.21	Ag23	0.29	Ag37	0.18
Ag10	0.22	Ag24	0.12	Ag38	0.35
Ag11	0.11	Ag25	0.02	Ag39	0.15
Ag12	0.12	Ag26	0.15	Ag40	0.17
Ag13	0.20	Ag27	0.18	Ag41	0.03
Ag14	0.32	Ag28	0.43	Ag42	0.36

References

- [1] G. Kresse, D. Joubert, *Phys. Rev. B* **1999**, *59*, 1758.
- [2] G. Kresse, J. Furthmüller, *Phys. Rev. B* **1996**, *54*, 11169.
- [3] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865.
- [4] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, *Phys. Rev. B* **1992**, *46*, 6671.
- [5] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. **2010**, 132, 154104.
- [6] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, *J. Phys. Chem. B* **2004**, *108*, 17886.
- [7] W. Tang, E. Sanville, G. Henkelman, *J. Phys. Condens. Matter* **2009**, *21*, 084204.
- [8] G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
- [9] X. Zhu, P. Zhu, X. Cong, G. Ma, Q. Tang, L. Wang, Z. Tang, *Nanoscale* **2024**, *16*, 16952.
- [10] R. Wang, H. Haspel, A. Pustovarenko, A. Dikhtiarenko, A. Russkikh, G. Shterk, D. Osadchii, S. Ould-Chikh, M. Ma, W. A. Smith, K. Takanabe, F. Kapteijn, J. Gascon, *ACS Energy Lett.* **2019**, *4*, 2024.
- [11] Z. Zhao, L. Lin, Y. Ni, L. Jin, L. Feng, Y. Wang, Y. Wei, J. Zhang, J. Chen, *Appl. Catal. B Environ. Energy* **2024**, *349*, 123886.
- [12] M. Usman, M. H. Suliman, Catalysts 2023, 13, 867.
- [13] H. Seong, K. Chang, F. Sun, S. Lee, S. M. Han, Y. Kim, C. H. Choi, Q. Tang, D. Lee, *Adv. Sci.* **2024**, *11*, 2306089.
- [14] Y.-X. Wang, J. Li, F.-Q. Zhang, Z. Qi, F. Zhang, X.-M. Zhang, ACS Cent. Sci. 2025, 11, 1428.
- [15] J. Zhang, T. H. M. Pham, Y. Ko, M. Li, S. Yang, C. D. Koolen, L. Zhong, W. Luo, A. Züttel, *Cell Rep. Phys. Sci.* **2022**, *3*, 100949.
- [16] S. Ma, R. Luo, J. I. Gold, A. Z. Yu, B. Kim, P. J. A. Kenis, *J. Mater. Chem. A* **2016**, *4*, 8573.
- [17] Y. Chen, X. Zhou, X. Liu, Z. Tang, L. Wang, Q. Tang, J. Am. Chem. Soc. 2025, 147, 2699.
- [18] S. Yoo, D. Kim, G. Deng, Y. Chen, K. Lee, S. Yoo, X. Liu, Q. Tang, Y. J. Hwang, T. Hyeon, M. S. Bootharaju, *J. Am. Chem. Soc.* **2025**, *147*, 12546.
- [19] G. Deng, J. Kim, M. S. Bootharaju, F. Sun, K. Lee, Q. Tang, Y. J. Hwang, T. Hyeon, *J. Am. Chem. Soc.* **2023**, *145*, 3401.
- [20] C. Kim, H. S. Jeon, T. Eom, M. S. Jee, H. Kim, C. M. Friend, B. K. Min, Y. J. Hwang, *J. Am. Chem. Soc.* **2015**, *137*, 13844.
- [21] L. Qin, F. Sun, X. Ma, G. Ma, Y. Tang, L. Wang, Q. Tang, R. Jin, Z. Tang, *Angew. Chem. Int. Ed.* **2021**, *60*, 26136.

- [22] S. Tang, J. Xu, X. Liu, Y. Zhu, *Chem. Eur. J.* **2022**, *28*, e202201262.
- [23] N. Zhang, X. Zhang, L. Tao, P. Jiang, C. Ye, R. Lin, Z. Huang, A. Li, D. Pang, H. Yan, Y. Wang, P. Xu, S. An, Q. Zhang, L. Liu, S. Du, X. Han, D. Wang, Y. Li, *Angew. Chem. Int. Ed.* **2021**, *60*, 6170.
- [24] K. Qi, Y. Zhang, J. Li, C. Charmette, M. Ramonda, X. Cui, Y. Wang, Y. Zhang, H. Wu, W. Wang, X. Zhang, D. Voiry, *ACS Nano* **2021**, *15*, 7682.
- [25] Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, *Nat. Commun.* **2014**, *5*, 3242.