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Electric field

Magnetic field

Aston's design for the mass spectrograph.

1919

Francis William Aston

1922 Nobel Prize in Chemistry for his discovery, by means of his mass spectrograph,
of isotopes, in a large number of non-radioactive elements, and for his enunciation
of the whole number rule.



http://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistry
http://en.wikipedia.org/wiki/Mass_spectrograph
http://en.wikipedia.org/wiki/Whole_number_rule
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C: Buckminsterfullerene
H. W. Kroto", J. R. Heath, S. C. O’Brien, R. F. Curl
& R. E. Smalley

Rice Quantum Institute and Departments of Chemistry and Electrical
Engineering, Rice University, Houston, Texas 77251, USA

During experiments aimed at understanding the mechanisms by
which long-chain carbon molecules are formed in interstellar space
and circumstellar shells', graphite has been vaporized by laser
irradiation, producing a remarkably stable cluster consisting of
60 carbon atoms. Concerning the question of what kind of 60-
carbon atom structure might give rise to a superstable species, we
suggest a truncated icosahedron, a polygon with 60 vertices and
32 faces, 12 of which are pentagonal and 20 hexagonal. This object
is commonly encountered as the football shown in Fig. 1. The Cg,
molecule which results when a carbon atom is placed at each vertex
of this structure has all valences satisfied by two single bonds and
one double bond, has many resonance structures, and appears to
be aromatic.

NATURE VOL. 318 14 NOVEMBER 1985

Fig. 1 A football (in the
United States, a soccerball)
on Texas grass. The Cg
molecule featured in this
letter is suggested to have
the truncated icosahedral
structure formed by
replacing each vertex on the
seams of such a ball by a
carbon atom.

graphite fused six-membered ring structure. We believe that the
distribution in Fig. 3c is fairly representative of the nascent
distribution of larger ring fragments. When these hot ring clusters
are left in contact with high-density helium, the clusters equili-
brate by two- and three-body collisions towards the most stable
species, which appears to be a unique cluster containing 60
atoms.

When one thinks in terms of the many fused-ring isomers
Ej_t'llgngatisﬁcd valences at the edges that would naturally arise
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Ammu Mathew et al. ACS Nano 2014.



Evolution of noble metal clusters
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Positive mode MALDI MS of BBSHNCD complex
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Substitution chemistry of clusters
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Yoshiki Niihori, Miku Matsuzaki, T. Pradeep and Yuichi Negishi, J. Am. Chem. Soc., 135 (2013) 4946-4949



Ligand exchange chemistry — Cluster isomers

Absorbance at 380 nm (a. u.)
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Dempster's 1918 mass spectrometer

Arthur J. Dempster




1886 Eugen Goldstein observes canal rays. - gas discharge

1898 Wilhelm Wien demonstrates that canal rays can be deflected using strong electric and magnetic fields.

1898 J. J. Thomson measures the mass-to-charge ratio of electrons.

1901 Walter Kaufmann uses a mass spectrometer to measure the relativistic mass increase of electrons.

1905 J. J. Thomson begins his study of positive rays.

1906 Thomson’s Nobel Prize in Physics . -

"in recognition of the great merits of his theoretical and experimental i

1906 Gehrke and Reichenheim first produced anode rays by surface B rl e-f h I Sto ry Of

1913 Thomson is able to separate particles of different m/e ratios. He

identifies the m/z = 11 due to doubly charged 22Ne particle.

1918 Dempster in his first experiment with his 180 degree spectrome

1919 Francis Aston constructs the first velocity focusing mass spectr¢ I I l aS S S p e Ct ro | I I etry
1922 Aston’s Nobel Prize in chemistry "for his discovery, by means of

mass spectrograph, of isotopes, in a large number of non-radioactive eilements,

and for his enunciation of the whole-number rule."

1931 Woodstock first observed secondary ion formation from bombarding ions. Herzog (1942) filed a German patent application for a SIMS analyzer.
1934 Josef Mattauch and Richard Herzog develop the double-focusing mass spectrograph.

1936 Arthur J. Dempster develops the spark ionization source.

1937 Aston constructs a mass spectrograph with resolving power of 2000.

1937-47 Nier develops instruments for precise isotope ratio measurements, which became the model for El sources.

1939 Lawrence receives the Nobel Prize in Physics for the cyclotron.

1942 Lawrence develops the Calutron for uranium isotope separation.

1943 Westinghouse markets its mass spectrometer and proclaims it to be "A New Electronic Method for fast, accurate gas analysis".
1946 William Stephens presents the concept of a time-of-flight mass spectrometer.

1954 A. J. C. Nicholson (Australia) proposes a hydrogen transfer reaction that will come to be known as the McLafferty rearrangement.
1954 Inghram and Gomer first demonstrated field ionization from a point source.

1959 Researchers at Dow Chemical interface a gas chromatograph to a mass spectrometer.

1964 British Mass Spectrometry Society established as first dedicated mass spectrometry society. It holds its first meeting in 1965 in London.
1966 F. H. Field and M. S. B. Munson develop chemical ionization.

1968 Malcolm Dole develops electrospray ionization.

1969 H. D. Beckey develops field desorption.

1974 Comisarow and Marshall develop Fourier Transform lon Cyclotron Resonance mass spectrometry.

1976 Ronald MacFarlane and co-workers develop plasma desorption mass spectrometry.

1984 John Bennett Fenn and co-workers use electrospray o ionize biomolecules.

1985 Franz Hillenkamp, Michael Karas and co-workers describe and coin the term matrix-assisted laser desorption ionization (MALDI).
1987 Koichi Tanaka uses the “ultra fine metal plus liquid matrix method” to ionize intact proteins.

1989 Wolfgang Paul receives the Nobel Prize in Physics "for the development of the ion trap technique".

1999 Alexander Makarov presents the Orbitrap mass spectrometer.

2002 John Bennett Fenn and Koichi Tanaka were awarded one-quarter of the Nobel Prize in chemistry each "for the development of soft
desorption ionisation methods ... for mass spectrometric analyses of biological macromolecules."



lonization in mass spectrometry

1886 Eugen Goldstein observes canal rays due to gas discharge.

1906 Gehrke and Reichenheim first produced anode rays by surface ionization
(SI).

1931 Woodstock first observed secondary ion formation from bombarding ions.
Herzog (1942) filed a German patent application for an SIMS analyzer.

1936 Arthur J Dempster develops the spark ionization source.

1937-47 Nier develops instruments for precise isotope ratio measurements,
which became the model for EIl sources.

1954 Inghram and Gomer first demonstrated field ionization from a point source.
1966 F. H. Field and M. S. B. Munson develop chemical ionization.

1968 Malcolm Dole develops electrospray ionization.

1969 H. D. Beckey develops field desorption.

1976 Ronald MacFarlane and co-workers develop plasma desorption mass
spectrometry.

1984 John Bennett Fenn and co-workers use electrospray to ionize
biomolecules.

1985 Franz Hillenkamp, Michael Karas and co-workers describe and coin the
term matrix-assisted laser desorption ionization (MALDI).

1987 Koichi Tanaka uses the “ultra fine metal plus liquid matrix method” to ionize
intact proteins.
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Molecular Ionization from Carbon Nanotube Paper**
Rahul Narayanan, Depanjan Sarkar, R. Graham Cooks, and Thalappil Pradeep*

Dedicated to Professor C. N. R. Rao on the occasion of his 80th birthday.

Abstract: Ambient ionization is achieved by spraying from
a carbon nanotube (CNT)-impregnated paper surface under
the influence of small voltages (>3 V). Organic molecules give
simple high-quality mass spectra without fragmentation in the
positive or negative ion modes. Conventional field ionization is
ruled out, and it appears that field emission of microdroplets
occurs. Microscopic examination of the CNT paper confirms
that the nanoscale features at the paper surface are responsible
for the high electric fields. Raman spectra imply substantial
current flows in the nanotubes. The performance of this
analytical method was demonstrated for a range of volatile and
nonvolatile compounds and a variety of matrices.

over the past decade. Herei
achieved from a substrate {
tubes (CNTs) at a potential
that the high electric fields
CNT protrusions are respol
which appears to occur by
droplets.®! With this “nar
analytes, which are applied
are detectable in small amg
appear as either their pro
whereas salts yield both po
that a high voltage (HV) is 1
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A) Schematic diagram of ionization from CNT paper, B) Optical photograph of the ionization
source C) mass spectrum of triphenylphosphine (M) at 3 kV, 3 V and 1 V from wet CNT paper, D)
FE-SEM image of CNT-coated paper, E) isotope distribution of the protonated molecule at 3 V
and F) product ion MS? of m/z 263.
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Full range mass spectrum of
triphenylphosphine at 3 V
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A) Mass spectrum of TPP below 500 V using normal paper B) spectrum
of TPP at 3 V using CNT-coated paper C) spectrum at 500 V from a
normal paper, D) spectrum using rectangular CNT-coated paper and the
inset shows the schematic, E) variation of intensity of the m/z 263 peak
with voltage for CNT-coated paper and F) the same for normal paper.



Increase in intensity by the addition of acid:

A)  [M+H! § B) [M+ HJ*
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Intensity enhancement upon the addition of dil. HCI for various analytes (M) at 3 V, A)
triphenylphosphine, B) tributylphosphine, C) diphenylamine and D) triethylamine. The top
spectrum is without HCI addition.



Analysis of preformed ions:

% Analysis of preformed ions (positive and
N3 g . negative ion modes) at 3 V; A)
o Q, . .
- s | = tetramethylammonium chloride and B)
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Analysis of preformed ions (positive and
negative ion modes) at 3 V; A)
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[M+ HJ*

Uninvited guests in our meals +

. Pesticides and food-related risks = |
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Detection of pesticides examined individually from the surface of an orange. A) Carbofuran, B)
methyl parathion and C) parathion.



Analysis of commercial tablets:

v T
o ©" m
1.

100 125 150 175 200

A)

152

B) [M+ H]*
380@ _ O
v

o T

T g [M]

389

Intensity

100 200 300 400 500
L

C)

152

[M+ H* 152@

¥ S
I

152

—110

100 125 150 175 200
I 1 1 1 1

100 200 300 400 500
m/z

Analysis of tablets from CNT-coated paper at 3 V with their mass spectral and MS? data. A)
Crocine (paracetamol), B) xyzal (levocetirizine dihydrochloride) and C) combiflam (paracetamol).




Analysis of amino acids:
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Detection of various amino acids (90 ng) loaded on CNT-coated paper and spectra recorded at 3
V. A) phenylalanine, B) methionine, C) glutamic acid, D) glutamine, E) isoleucine, F) valine, G)
proline and H) serine.



Raman analysis of the paper:

A) D - band CNT paper before the experiment
84_%’ CNT paper after the experiment
27 2 G-band
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Raman shift (cm-)

Raman measurement of CNT-coated paper before and after ionization. A) Neutral molecules (30

ppm TTP in MeOH/H,0) and preformed ions (tetramethylammonium bromide) in B) positive and
C) negative ion modes.
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Chloride
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Diphenylamine
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Next steps



Desorption Electrospray lonization (DESI) Mass
Spectrometry

HV power supply

Solvent

N, = Desorbed Mass spectrometer

Nebulizer ions inlet

Spray Gas jet
capillary /




Intensity

&
=
=

=

Ammu Mathew et al. Angew. Chem. 2012



Purple petal White petal

m/z 457 (..

Hemalatha and Pradeep, J. Food Agri. Chem. 2013



Electrodeposition
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Surface enhanced Raman active patterns

Depanjan, Anupama, Pradeep and Cooks, submitted
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| ocalised chemical transformation in nanostructures
at ambient conditions

Depanjan, Anirban, Sisira and Mabhita, et al.



lonization from unusual surfaces



Second bilayer /

{0001}

Basal plane 45

First bilayer

[0001] ..
e

___________ "Contribution from third bilayer

-

*-. . Full bilayer terminated

w» Half bilayer terminated

-2.75 A

S. Bag et. al. Ann. Rev. Anal. Chem. 2013
J. Cyriac et al. Chem. Rev. 2012

A perspective view of Ih ice growth on a Ru(0001) substrate. The grey balls indicate the Ru atoms, the black balls represent the oxygen atoms
and the white balls stands for the hydrogen atoms. Hydrogen bonds in the ice structure are shown by black dotted line in between the water

molecules. The epitaxial growth of ice is shown.



H* + H,0 (liquid) - H,0*

H* + H,0 (solid) - ?

(at ultralow energy)
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Mass spectrum upon the bombardment of 1 and 2 eV H* on amorphous ice (CASW) &
crystalline ice (CW)

Bag et al. J. Phys. Chem. C. 2011 "'







What next?



http://ice-cube-melting.wikispaces.com/

Honey, I shrunk the mass

spectrometer

[T Madras team was able to create ions fram any sample even at one volt

| R. PRASAD

25 spectromes
ters that are os
snall as o smart
pwone nd re-
| quire as little a5 coe wll — a
| 3,000-time reduction in po-
| leatial = o create anelecric
| fieddd which weald turz a s
pleintoions for identific
of conposition may soan be-
| come 3 reality
The feat of shrinking the
| fon source that reguires very
litthe wltage vas achieved hy
| & team led by Prof. T, Pradecp
| of the Departmers of Clism-
| istry, 1T Madras. The resslts
| were published st week in
| the Angevandte Chande {n-
temationsl journal,
Conventiomally, a solution
Lof the sample b dectos-
| praved at 3,000 wlts to ¢re-
|ate charged druplels  that
| Bexome lons, The lons are, In
| tumn, andysed to find the
| compasition ar chemical con-
| stituents in Uy cose of i sam-
| ple mixture,
The mussive reduction in
vidlage roy
| pessible by using carbon na-
| netubz-impregnated paper to
| act as a substrate on which
| the sample was deposited. If
| the coaveational method us-
L orvorr high veltage to creato
a stremg clectric fidd, the
| sharp proirusions of lhe cr-
| bon manotulbes help in cve
ating the ligh eledricfield by
using verylowvoltage
'Ol\.‘ Vl'l' oTor a f\“-' nino
metres ¢reates an electric
| fidd equivalent to 10 million
| volta over a contimaotes,” Prof.
| Pradeep  explaized.  “The
| whole idea was o keep the
| nonotubes  separated  from
| ench other, Normully they get
bundled.”

smenl become

INNOYATIVE: Raeldd Narayaran of the Department of
Chermistry, T Madras and the lead outhor of the
paper performs an experiment using nanotube-
coated paper, = PROTO: SPECAL ARRANGEMENT

Onee zanotubes get dun:
e, they tum ost tabecime
large  wire-like  structurne
thereby increasiag the rolt-
age required to create an elec-
Lric fiell. “Earlies
expenments [by others! us:
ing carbon ranaotubes failed
@ the nimotubes were bun
dieel,” he said. In Facl, stan:
dard procedures are avaiable
to digrerse the nonotubes.

[ncidextally, the order in
which Prof. Pracdeep's experi
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al. "I had been afer this
method for a long time. |
kaew losisation s possible
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voltage. But the mswer came
firet,” he recalled, 1 uedor
stod tha: by using the nano.
tube disperson lechnigee |
could got s So thoe ions
came first, and | looked al
why this happensd.” And he
soon fgured it out. *1 realised
thut ions wercobserved as the
mnolibes were separated,

he ssid

“All gead science is com-
monsense,” he poteld. “Wie
wou bokback, [the way] nany
science dreckthroughs Thap-
pen | look simple.. guite silly,
But ¥ von had told this [mini-
aturizing mass spectrometes)
20 years agy people voukl
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not dear why molecules pre-
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signals (techmically called &=
noinc)

Esrlier, saentists succeed-
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an’® each. Now. by shrinkirg
the sze of the lon scurce, the
possibility of simplifying
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lvsing  various  substances
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“1E yoir hawe a goed vaeuum
system and contrelled elec-
tromes, we can shrink o mass
spectrameter to smart-phose
size. we can simplify it
That's the inpertance of Lhis
lisenvery. ™ he emphasised

He foresees 1 day not teo
far awax when gently rubbing
the noaotube-zontxl paper
o iy ebject ~ anapple or a
Lablet = will be suMicient w
rollect camples for snalpsisin
a lab. The nanotube-coated
substrate can also be reused,
In &1, there is a red possibil-
ity of completely reveriting
e way sanple testing gus
ilone.

“So what it mears [is that]
you can collect samples -
motely and analyse them
elsewhere for disease o pel-
Iution prevention or any such
thing,” e noted, “In a sense,
we can make a muss spec-
tromoeter reach a widder audi-
ence” The s
spectrometer isa scphisticat-
ed msttument and has been
nut of bounds te the common
man.

Pradecing  «
roaled subsirate is also quite
stmple. Nanolabes can be
grown separately and then
coated on the substrate and,
helwld, it is ready for sample
loncing

Since samples can be col-
lected by gently rubbing the
substrate en  the maoterial,
there is a possibility of some
tubes breaking and stickingto
the surface of the matoral
tested, Will such broken na-
notubes couse any  deakh
hazsrd?

“We nust ersure that the
substrate isholding the nano-
tubes firmly, sono nonotuboes
stick to the sample tested,” be
noted,

nanwlule

The Hindu
March 27, 2014

Also featured in several
newspapers and websites. Such as
The Engineer, PACE, Science Daily,
iConnect, Purdue News, etc.

http://www.thehindu.com/sci-tech/science/honey-i-shrunk-the-mass-spectrometer/article5835840.ece
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