

Innovations to address groundwater contamination

South Asia Groundwater Forum, Jaipur, June 1-3, 2016

Universal solvent

	CROUP		PE	ERI	OD	DIC	TA	BL	E (OF	TH	EE	ELE	IME	EN.	TS		18 100
WRDD -	H	1 14	che one	-		14444.05 1847-048		war E	i terined wit	E tour	ese agoro atonen era etament		10 IIA	H . 88	18 10	28 100	17 VIA	He
1	Li	Be	~	inani.	B			Lanharia Aspeta	etter Me	- Key - Key - Key	gen (25 °C; 101) Fo - said Th: - saint	~	B	C	N	O	F	Ne
3	Na	Mg		* 00	* 49	. 6	7 100	. /	, VIB				Al	Si	P	S	CI	Ar
	K	Ca	Sc	E et ar	D SING V	Cr	Mn	Fe	17 sum Co	25 MAR	Сп	Zn	Ga	Ge	As	Se no	Br	Si et
e h	ave	clea	in w	ater	on t	he s	surfa	ce o	of Ea	irth c	only	beca	ause	e che	emis	try p	erm	its
8	KO LOCUN	CTORES SA THE	11100	Rine	PAD HORN	THE DECK	100-0010	NU N	PCDate Incode	Fu Builden The mice	Ag Note	CODERNA AD 20230	100 M	38 38	50 201.00	THE THE	1 10%	1000 16 0
.*	Cs	Ba	Lo-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	R
7	Fr Fr	Ra	ID-105 Ac-Lr Acases	Bf	EC.	Se can	IEh IEh	Hes person Help Honore	ENDS	Un are Unn	Uum Uum	Unit and United States		Usq Usq			1	
a har	April Charm. 1			57 128.91	58 140.12	59 140.00	48 101.01	60 1945	42 V54.04	40 -10-34	AI 19.8	45 136:00	-	\$7 164.00	48. 101.00		79 17564	75 194
1111	terrificaren, Fa tes, dir telle fer des reges te er (Theodores)	angles of the for	And the second	La	Ce	Pr	Nd	IPma .	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
111	ter is chosed	nicit: anregio Raus al plans	cargina	19 (20)	10 mm	Pr ania	92 286.0	NI par	н ри	16 pd	H 00	17 (M)	H DI	IP DE	100 (317) 173	He play	110 (300)	100 00

Source: http://ga.water.usgs.gov/edu/earthwherewater.html

Why nanotechnology?

Nano 10-9

Sajanlal and Pradeep, Kirk-Othmer Encyclopedia, 2012

www.pubs.acs.org

Technology is about manipulating objects

Growth of civilization reduced the size of objects manipulated

An object for the nanotechnology - nanomaterials.

S4800 30.0kV 8.3mm x13.0k SE(U,LA0)

4.00um

200nm

Nanoparticles/clusters

Variation in properties originating from ligand shell and metal core as bulk noble metals transform to nanoparticles/clusters. Sizes are not to scale. New properties such as color and photoluminescence arise in such size regime. Photographs of Au@citrate nanoparticles (inset A) showing intense absorption of visible light and Au@SG (SG corresponds to glutathione thiolate) clusters (inset B) showing intense photoluminescence upon ultraviolet irradiation (from the author's work).

Permissible contamination reaches limits of detection

Decrease in the permissible limit of arsenic in drinking water, according to US EPA, with time. The graph indicates a general trend.

3. Can we reach limits?

(A)–(C) Dark field fluorescence images of Au@SiO₂@Ag₁₅ MFs showing the gradual disappearance of luminescence with increasing Hg²⁺. (D)–(F) Fluorescence images showing variation in color during the addition of Hg²⁺ of different concentrations to Au@SiO₂-FITC@Ag₁₅ MFs. Insets in all images show the corresponding optical images of the MFs; scale bars are 3 µm.

Cavities, channels, imprints, assemblies, fibres, ...

Metal Clusters

Shibhu, Habeeb, Uday, Kamalesh, Lourdu, Ammu, Ananya, Indranath, Atanu,

Biopolymer-re nanocomposit water purifica

Mohan Udhaya Sankar¹, Saha Kamalesh Chaudhari, and Tha

Unit of Nanoscience and Thematic Uni

Edited by Eric Hoek, University of Calif

Creation of affordable materials fo water is one of the most promising drinking water for all. Combinin composites to scavenge toxic sp other contaminants along with the affordable, all-inclusive drinking v without electricity. The critical p synthesis of stable materials that uously in the presence of comp drinking water that deposit and surfaces. Here we show that suc be synthesized in a simple and effe out the use of electrical power. 1 sand-like properties, such as highe forms. These materials have been water purifier to deliver clean drin ily. The ability to prepare nanos ambient temperature has wide water purification.

hybrid | green | appropriate technolog

Featured in: The Guardian, UK The Hindu, Telegraph, Times of India, etc. Scientific American New Scientist and many others

Future of water purification: An enigma with some pointers

Category-wise distribution of contaminants regulated by USEPA and future contaminants

Noble metal nanoparticles for water purification: A critical review, T. Pradeep and Anshup, Invited critical review, Thin Solid Films, 517 (2009) 6441-6478 (DOI: 10.1016/j.tsf.2009.03.195).

World's first nanochemistry-based water purifier

RSC Advancing the Overvical Science

Chemistry World

Pesticide filter debuts in India

20 April 2007

Kilugudi Jayaraman/Bangalore, India

A domestic water filter that uses metal nanoparticles to remove disorded positicitie reacture is about to enter the indian market, its developers at the indian institute of Technology (ITF) in Chemal (formerly Markas) believe it is the first product of fits kind in the world to be commercialised.

Mumbai-based Euroka Forbes Limited, a company that sells water purification systems, is collaborating with IT and has beeted the device in the field for over six months. Jayachandra Reddy, a technical consultant to the company, expects the first 1000 units to be sold door-to-door from late May.

'Our pesticide filter is an offshoot of basic research on the chemistry of nanoparticles.' Thatappl Prackey who lies the Neural till "Chemistry Work! He and the student Decementaria that discovered in 2023 that hatcantrone such as carbon tetrachioride (CC4) completely break down into metal halides and

amorphous carbon upon reaction with gold and silver nanoparticles¹.

Pratespisal this prompted them to extend their study to include organophocholine and organophosphorous peaticides, whose presence in water is posing a teath risk in rural incits. In research funded by the Department of Science and

Technology in New Delh, his team found^{2,3} that gold and silver nanoperticles loaded on alumine were indeed able to completely remove endosulfan, malathion and chlorpyrifos - three pesticides that base

Water suppres

Chemistry world

First ever nanotechnology product for clean water

A plant to make supported nanomaterials for water purification; with capacity of 4.5 tons per month, 2007

 Patents: A method of preparing purified water from water containing pesticides, Indian patent 200767
 Extraction of malatheon and chlorpiryhphos from drinking water by nanoparticles , US 7,968,493 A method for decontaminating water containing pesticides, EP 17,15,947
 Product is marketed now by a Eureka Forbes Ltd.
 Several new technologies are now available

Affordable materials for water purification - Bioinspired

Water positive

Water-based, room temperature, water stable

Green

M. U. Sankar et al, PNAS 2013

Live/dead staining experiments

TOC – Humic acid

e

d

С

a

Α

Physicochemical characteristics of influent natural drinking water

(Note: All parameters are expressed in mg L⁻¹, except for pH and conductivity) ND-not detected

Natural drinking water (without treatment so that there is a residual bacterial count in it) was used for testing to ensure that that the material functions in the field.

Parameters	Value
Total coliforms (CFU/mL)	1-2 x 10 ³
р Н @25°С	7.8
Conductivity (µS/cm)	640.000
Fluoride	0.573
Chloride	86.340
Nitrate	1.837
Sulphate	32.410
Silicate	15.870
Lithium	ND
Sodium	53.740
Ammonium	ND
Potassium	2.330
Magnesium	14.340
Calcium	28.720

A simple set-up which has been used for arsenic testing study: arsenic containing water is turned into arsenic free clean drinking water using a simple cartridge having the arsenic adsorbent (A), and a cartridge having about 20 g of the adsorbent (a). Arsenic experiment which was conducted using a 60 g cartridge, under natural water conditions (B), and the ferrous experiment which was conducted with combination of arsenic experiment (b).

Anion effect

R. Swathy, et al. Scientific Reports, 2014

Imagining how new adsorbents are changing the dynamics at ground level

- Existing unit for iron and arsenic removal – 20 m³/h
- Uses activated alumina and iron oxide (old generation of adsorbents)

- Existing unit for iron and arsenic removal – 18 m³/h
- Uses iron oxyhydroxide (new generation of adsorbents)
- Input arsenic concentration: 168 ppb
- Output arsenic concentration: 2 ppb

Performance data from Murshidabad (continued)

S. No.	Sample Name	Input arsenic (ppb)	Output arsenic (ppb)	Number of days running
23.	Babaltali Jumma Masjid, Raninagar – II	10.7	0	180 days
24.	Sargachhi Paschimpara Jumma Masjid, Beldanga – I	1.26	0.04	180 days
25.	Pratappur Jumma Masjid, Hariharpara	27.19	0.13	180 days
26.	Fakirabad Jumma Masjid, Domkal	24.67	0	180 days
27.	Shialmari Jumma Masjid, Raninagar – II	287.5	0.09	240 days
28.	Bhabta Ahelahadis Jumma Masjid, Beldanga	8.6	5.7	240 days

A glimpse of performance data for installations in Nadia

S. No.	Sample Name	Input arsenic (ppb)	Output arsenic (ppb)	Number of days running
1.	Dhapadia Junior Madrasah	46.5	2.15	30 days
2.	Khidirpur Shishu Shiksha Kendra	14.99	0	260 days
3.	Junior Madrasah	12.7	0	60 days
4.	Dhapana Board High School	14.96	0.6	45 days
5.	Birpur Primary School	19.56	0	90 days
6.	Bethuaduari JCM High School	4.56	0	45 days
7.	Jugnuthala Primary School	23.36	0	60 days
8.	Dahakula Primary High School	36.6	0	60 days
9.	Bargachi Primary School Nagadi	9.56	0	90 days
10.	Dahakula Primary School	22.7	0	60 days
11.	BJ Kumari Primary School	5.9	0	100 days
12.	Arijnagar Primary School	0.13	-	60 days
13	Patikpari Girls Primary School	9.6	0	60 days
14	Bawanipur Primary School Nagadi	0.49	0	60 days

Work was featured in several journals

Nature Nanotechnology, July 2014 issue

A glimpse of performance data for installations in Murshidabad

S.No	Sample Name	Input arsenic (ppb)	Output arsenic (ppb)	Number of days running
1.	Topidanga Jumma Masjid, Bhagwangola-II	31	0	30 days
2.	Bhandahara Jumma Masjid, Bhagwangola-II	20.7	0.4	30 days
3.	Horirampur Jumma Masjid, Bhagwangola-II	37	0	45 days
4.	Dihipara Jumma Masjid, Bhagwangola-II	4.8	1.8	30 days
5.	Bahadurpur High School, Bhagwangola-I	9.4	0.2	30 days
6.	Charlabangola Higher Sec School, Bhagwangola-I	28.2	0.1	245 days
7.	Mahisasthali Girls' High School, Bhagwangola-I	0	0	30 days
8.	Orahar Girls' High School, Bhagwangola-I	0.53	0	10 days
9.	Rabindratola BN Pandey High School, Bhagwangola-I	84.3	0	245 days
10.	Karbalajamam Masjid, Berhampore	6.8	0	150 days
11.	PHED office, Berhampore	32	0	10 days
12.	Nabipur Bazar Jumma Masjid, Raninagar-II	1.3	0	60 days
13.	Rukunpur Jumma Masjid, Hariharpara	25.6	2.2	60 days
14.	Klyanpur Jumma Masjid, Domkal	64.7	0	200 days
15.	Benadaha Mondalpara Hanafi Jamat, Beldanga-I	9.04	0	180 days
16.	Maniknagar Jumma Masjid, Domkal	1	0.04	60 days
17.	South Hariharpura Jumma Masjid, Hariharpara	5.47	0	60 days
18.	Lochan Mati Danga Para Jumma Masjid, Hariharpara	14.6	0	150 days
19.	Paschim Malipara Jumma Masjid, Raninagar – II	3.3	0.13	90 days
20.	Khalilabad Jumma Masjid, Hariharpara	179.0	0	270 days
21.	Bhatu Komnagar Masjid, Raninagar –II	67.89	0.22	360 days

India Mark II hand water pump – most common water pump used globally

InnoNano Research's in-line arsenic removal filtration system

In-line arsenic sensor and remote data management - indicates when filtration systems require maintenance. **IMPROVED FILTER**

Biosensor Design

1st Generation Design (Mediated Electrochemistry)

2nd Generation Design (Direct Electron Transfer)

low-cost nanostructured electrodes which interact directly with enzyme (e.g. graphene or CNT). Integrate Arsenic *monitor* and Arsenic *filter* into in-line filtration/monitoring unit to improve management of Arsenic problem

Proprietary nano materials
Manufactured in India
Filters arsenic & iron
Integrated to Mark II hand pumps

Quantum cluster based metal ion sensing paper Large area uniform illumination using quantum cluster

Decrease in the absorption of Au₁₅ as a biofilm is dipped into the cluster solution. Inset: Free standing quantum cluster loaded film in visible light and UV light.

Anu George et al. ACS Applied Materials & Interfaces, 2012

Approaching detection limits of tens of Hg²⁺

Atanu Ghosh et al. Anal. Chem.2014.

Video of mercury quenching experiment using the nanofiber

Featured in:

The Hindu, Telegraph, Times of India, etc. C&E News and many others

Ammu Mathew, et al. Angew. Chem. Int. Ed. 2012

Cheap Nanotech Filter Clears Hazardous Microbes and Chemicals from Drinking Water

A \$16 device could provide a family of five with clean water for an entire year By Luciana Gravotta

About 780 million people—a tenth of the world's population—do not have access to clean drinking water. <u>Water</u> laced with contaminants such as bacteria, viruses, lead and arsenic claims millions of lives each year. But an inexpensive device that effectively clears such contaminants from

Imaging of seed section using DESI

Myristica malabarica seed Malabaricone C (*m/z* 357)

Ifa, D. R.; Srimany, A.; Eberlin, L. S.; Naik, H. R.; Bhat, V.; Cooks, R. G.; Pradeep, T. *Anal. Methods* **2011**, *3*, 1910-1912.

<i>m/z</i> 174.1
<i>m/z</i> 490.5;468.5;600.0;772.4
<i>m/z</i> 155.1
<i>m/z</i> 490.5:468.5:600.0:772.4
<i>m/z</i> 365.3
<i>m/z</i> 174.1:610.3:915.5
<i>m/z</i> 306.25
<i>m/z</i> 490.5;468.5;600.0;772.4
<i>m/z</i> 306.25
m/z 365.33
<i>m/z</i> 306.25
m/z 198.25
<i>m/z</i> 306.25
m/z 348.25
<i>m/z</i> 306.25
m/z 633.25
<i>m/z</i> 306.25
m/z 328.25

New Book

EDITED BY DAVID E. REISNER • T. PRADEEP

Tiny particles offer a number of solutions

What more?

Affordable sensors

Solutions for many known and unknown species Unknown and poorly understood health effects Impact of our water existing technologies Effect of agrochemicals on environment and health Smart sensors and smart purifiers Sustainable chemistry Biology Poetry

Our science is supported by the Department of Science and Technology Government of India

Thank you