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Building Blocks
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B = cyclodextrins, fullerenes, nanoparticles, etc. assemblies with atomic precision
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ABSTRACT: Atomically precise pieces of matter of nanometer dimensions composed of
noble metals are new categories of materials with many unusual properties. Over 100
molecules of this kind with formulas such as Auy(SR)y, Augg(SR),,, and Auy,{SR),, as
well as Ag, (SR)., Agi(S;R)) and Ag.(SR)y, (often with a few counterions to
compensate charges) are known now. They can be made reproducibly with robust
synthetic protocols, resulting in colored solutions, yielding powders or diffractable crystals.
They are distinctly different from nanoparticles in their spectroscopic properties such as
optical absorption and emission, showing well-defined features, just like molecules. They
show isotopically resolved molecular ion peaks in mass spectra and provide diverse
information when examined through multiple instrumental methods. Most important of
these properties is luminescence, often in the visible—near-infrared window, useful in
biological applications. L.uminescence in the visible region, especially by clusters protected
with proteins, with a large Stokes shift, has been used for various sensing applications,
down to a few tens of molecules/ions, in air and water. Catalytic properties of clusters, especially oxidation of organic substrates,
have been examined. Materials science of these systems presents numerous possibilities and is fast evolving. Computational
insights have given reasons for their stability and unusnal properties. The molecular nature of these materials is unequivocally
manifested in a few recent studies such as intercluster reactions forming precise clusters. These systems manifest properties of the
core, of the ligand shell, as well as that of the integrated system. They are better described as protected molecules or aspicules,
where aspis means shield and cules refers to molecules, implying that they are “shielded molecules”. In order to understand their
diverse properties, a nomenclature has been introduced with which it is possible to draw their structures with positional labels on
paper, with some traming. Rescarch in this arca is captured here, based on the publications available up to December 2016.

Also the pioneering work of R. W. Murray, Robert L. Whetten, Uzi Landman, Tatuya Tsukuda, Yuichi Negishi, Hannu Hakkinen,
R. Jin, Nanfeng Zheng, Terry Bigioni, Osman Bakr, Kornberg, Jianping Xie, C. M. Aikens, Thomas Buergi, Quanming Wang, Amala
Dass, .... A. W. Castleman Jr., H. Schmidbauer, ...



Geometric and electronic shells
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Nanféhg Zheng et al. Nature Communications, 2013
Terry Bigioni et al. Nature 2013
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Ag,, Core in an Ag,, Shell: A Four-Electron
Superatom

Luminescent [Ag,,(dppe),(2,5-DMBT),,Cl,]?* Ag,, core Superatomic orbitals
crystals . s 3
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Energy (eV)

-4.28

Ag,,(dppe),(2,5-DMBT),,Cl, Oﬁer shell

Esma Khatun, et. al., ACS Nano, 2019
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(A) Optical absorption spectrum of Ag,,. Inset: image of single crystals under a microscope. (B)
HRESI MS of | which displays a peak at ~2876 m/z. Inset: Comparison of the theoretical and the
experimental isotopic distributions of Ag.,,.



The overall structure of Ag,,: A) Unit cell with a tetragonal arrangement; B) top view; C) side
view. Labels: red, blue and pink = Ag, yellow = S, orange = P, green = ClI, gray = C and white =
H.



Chemistry of clusters

Reactions of clusters
Reactions between clusters




Inter-cluster reactions
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Intercluster Reactions between Au,s(SR),s and Ag44(SR);0

K. R. Krishnadas, Atanu Ghosh, Ananya Baksi, Indranath Chakraborty,—;' Ganapati Natarajan,
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DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology
Madras, Chennai, 600 036, India

© Supporting Information

A+B1IC+D



> o}
PR
=5
-
e
N’

»4
ef
A (o
¢
=
<
_0
PR
=N
-
e
A
I
of
<
I_I

> )
PRy
o
-
e
N’

i

=
<

10
|
|

X=5432

[Au,s Ag,(FTP).l

(A)

SH

[Au,; Ag,(FTP) sl

(B)

[Au,, Ag (FTP).,I
Xx=543210

5250

7500

)
6750
m/z

6000




1197

M,

I: Ag,, Au_(FTP),, (PET)

MAg: 108

MPET: 137

MFTP: 127

Aysusyu|

(a)

6500

6000 8000 10000 12000 6000

m/z






Energies for the substitution reaction of (A) Au in Ag,,(SR),,, (B) Ag
in Au,.(SR),, and (C) the overall reaction energies (in eV) as a

function of their positions in product clusters, Au Ag,, (SR), and
Au,. Ag (SR) , for x=1

(A) Location of Au in

Au,Agy,, (SR AE/eV . .
M R0 /e Location of Agin
Icosahedron (1) -0.72 (B) Aux, AG(SR) AE/eV
-0.4
Dodecahedron: cube vertex Central atom (C) 10.71
(De) +0.23
Dodecahedron: cube face (D) -0.32 |cosahedron (1)
Staples (S) +0.44
Staples (S) -0.48
(C) Locations of Au in Au,Agu {SR)x
Location of Agin | Do, D4 S
Aux,Ag(SR) g
C -00B +0.564 +0.388 +0.226
| -0.486 +0.093 -0.083 -0.245

S -0.276 +0.303 +0.127 -0.035




Shell closure in intercluster reactions
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Nanfeng Zheng et al. Nature Communications, 2013



Ag,.-Au,_ experiments

K. R. Krishnadas et al. Nature Commun. 2016
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Evolution of alloy clusters from the dianionic adduct,
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DFT-optimized structure of [Ag, Au, (DMBT) (PET) |*
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How do we comprehend this?



Ball and stick structure
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A view of gold methly thiolate [25]aspicule (Au,.(SMe),).
Gold atoms colored gold, sulfur atoms by yellow, carbon

dark gray, hydrogen atoms as white and (b) with the gold and
sulfur atoms alone .




Shell Structure

(a) Au@Au, ,@Au,,@S.@S




Terminologies




1) Edge projection 2) Face Projection
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Aspicules



(D1-3,D2-3)-di(2-phenylethylthiolato),16(methylthiolato)-auro-25 aspicule(1-)
(D1-3,D2-3)-(PET),,(SMe), ,-auro-25 aspicule(1-)



Ligand Exchange & Alloy

1
1, 5-(SBB),,, 3-(SC.H_,),
(i, 1, 2, x2)-palladoauro-25 asp




(A) (B)

(€)

4. Yy
= NN N
~ G oo 2 ,' "L s
IA 2S5 vay]
T :‘/ -
AT

-

SIS

R-44(methylthiolato)-auro-102 aspicule(0)

R-(SMe),,-auro-102 aspicule(0) and L-(SMe), ,-auro-102
aspicule(0)



Cluster dimers
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Precision glloys..,
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3D view

Monomers

Dimers

500



ESI MS of the reaction mixture
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Kinetics of the exchange (monitored on the Ag,, side)
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Cluster dynamics

They are indeed molecules!

K. R. Krishnadas, et al. Acc. Chem. Res. 2017
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Interparticle Reactions: An Emerging Direction in Nanomaterials
Chemistry

K. R. Krishnadas, Ananya Baksi,” Atanu Ghosh, Ganapati Natarajan, Anirban Som,
and Thalappil Pradecp™

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) Indian Institute of
'I'echnology Madras, Chennai 600 036, India

- i A
e
y (i
0 L=?
» v
Ao

Agys Au (SR) g

Ags(SR)yg A“zs-vag:(SR)ls
Av@ 2@ sy @ @

CONSPECTUS: Nanoparticles exhibit a rich variety in terms of structure, composition, and propertics. However, reactions
between them remain largely unexplored. In this Account, we discuss an emerging aspect of nanomaterials chemistry, namely,
interparticle reactions in soliation phase, similar to reactions between molecules, involving atomically precise noble metal clusters.
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CONDENSED MATTER PHYSICS

Rapid isotopic exchange in nanoparticles

Papri Chakraborty', Abhijit Nag', Ganapati Natarajan’, Nayanika Bandyopadhyay',
Ganesan Paramasivam’, Manoj Kumar Panwar’, Jaydeb Chakrabarti?, Thalappil Pradeep'*

Rapid solution-state exchange dynamics in nanoscale pieces of matter is revealed, taking isotopically pure
atomically precise clusters as examples. As two isotopically pure silver clusters made of '°’Ag and "°°Ag
are mixed, an isotopically mixed cluster of the same entity results, similar to the formation of HDO, from
H,0 and D,0. This spontaneous process is driven by the entropy of mixing and involves events at multiple
time scales.

Copyright © 2019
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for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NC).
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Supramolecular chemistry

Papri Chakraborty, et,. al. ACS Nano 2018
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Figure 1. A) (a) Full range ESI MS, (b) experimental and calculated isotope patterns and (¢) DFT optimized structure of
[Agzg(BDT)12]3' cluster. B) (a) ESI MS of [Agzg(BDT)IZ(CGO)nP' (n=1-4) complexes, (b) experimental and calculated isotope
patterns of [Ag,,(BDT),,(C,) 4]3' and (c¢) schematic of the possible structure of [Ag,,(BDT),,(C,) 4]3'.
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Figure 3. NMR of (a) C, showing peak at 143.59 ppm, (b) the adducts at a cluster:fullerene molar ratio of 1:4 showing peak
at 143.03 ppm for the C, molecules in bound state and (¢) the adducts at an excess concentration of C (cluster:fullerene
molar ratio of 1:15) showing a predominant peak for free Cj (143.59 ppm) and a less intense peak for bound C, (143.03

ppm).



Isomerism in supramolcular adducts

Abhijit Nag, et al. JACS 2018



A) Ag,BDT,, =X B-cyclodextrin=CD
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Energy Resolved Fragmentation of Ag,,BDT,,N(X-CD)*
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Assemblies and superstructures



A)Agzg supramolecular addngt \{j/ith crown ether
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Papri Chakraborti, et. al., submitted
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Ag,, and Ag,, with the same shell
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Sensors
Catalysis
Energy harvesting - Solar cells



Summary

Atomically precise clusters is a new area of materials
science

Chemistry of these systems show new excitements

Borromean ring diagram of clusters can be used to
understand such reactions

Their extremely fast solution state dynamics is a puzzle
They show promising properties useful for applications
Clusters are indeed molecules

New materials are coming !
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