

Now in the 60th year

Atomically precise noble metal nanoparticles

T. Pradeep Institute Professor, IIT Madras pradeep@iitm.ac.in

Co-founder

InnoNano Research Pvt. Ltd. InnoDI Water Technologies Pvt. Ltd. VayuJAL Technologies Pvt. Ltd. Aqueasy Innovations Pvt. Ltd. Hydromaterials Pvt. Ltd.

Professor-in-charge

International Centre for Clean Water

RESEARCH GROUP

8th ChinaNANO, Beijing, August 17-19, 2019

pubs.acs.org/accounts

Article

Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies

4 Papri Chakraborty, Abhijit Nag, Amrita Chakraborty, and Thalappil Pradeep*

5 DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of

6 Technology Madras, Chennai 600 036, India

Contents

The subject area of clusters New science in synthesis, properties Reactions between clusters Borromean structures of clusters Supramolecular science of clusters Applications Future directions

Review

Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles

Indranath Chakraborty^{*}[©] and Thalappil Pradeep^{*}[©]

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

Supporting Information

ABSTRACT: Atomically precise pieces of matter of nanometer dimensions composed of noble metals are new categories of materials with many unusual properties. Over 100 molecules of this kind with formulas such as $Au_{25}(SR)_{18}$, $Au_{38}(SR)_{24}$, and $Au_{102}(SR)_{44}$ as well as $Ag_{25}(SR)_{180}$, $Ag_{29}(S_2R)_{12}$, and $Ag_{44}(SR)_{30}$ (often with a few counterions to compensate charges) are known now. They can be made reproducibly with robust synthetic protocols, resulting in colored solutions, yielding powders or diffractable crystals. They are distinctly different from nanoparticles in their spectroscopic properties such as optical absorption and emission, showing well-defined features, just like molecules. They show isotopically resolved molecular ion peaks in mass spectra and provide diverse information when examined through multiple instrumental methods. Most important of these properties is luminescence, often in the visible–near-infrared window, useful in biological applications. Luminescence in the visible region, especially by clusters protected with proteins, with a large Stokes shift, has been used for various sensing applications,

down to a few tens of molecules/ions, in air and water. Catalytic properties of clusters, especially oxidation of organic substrates, have been examined. Materials science of these systems presents numerous possibilities and is fast evolving. Computational insights have given reasons for their stability and unusual properties. The molecular nature of these materials is unequivocally manifested in a few recent studies such as intercluster reactions forming precise clusters. These systems manifest properties of the core, of the ligand shell, as well as that of the integrated system. They are better described as protected molecules or *aspicules*, where *aspis* means shield and *cules* refers to molecules, implying that they are "shielded molecules". In order to understand their diverse properties, a nomenclature has been introduced with which it is possible to draw their structures with positional labels on paper, with some training. Research in this area is captured here, based on the publications available up to December 2016.

Also the pioneering work of R. W. Murray, Robert L. Whetten, Uzi Landman, Tatuya Tsukuda, Yuichi Negishi, Hannu Hakkinen, R. Jin, Nanfeng Zheng, Terry Bigioni, Osman Bakr, Kornberg, Jianping Xie, C. M. Aikens, Thomas Buergi, Quanming Wang, Amala Dass, A. W. Castleman Jr., H. Schmidbauer, ...

Geometric and electronic shells

V

z

Х

Atanu Ghosh, et. al., ACS Nano 2017

Ag₁₀ Core in an Ag₁₂ Shell: A Four-Electron Superatom

Esma Khatun, et. al., ACS Nano, 2019

(A) Optical absorption spectrum of Ag_{22} . Inset: image of single crystals under a microscope. (B) HRESI MS of I which displays a peak at ~2876 m/z. Inset: Comparison of the theoretical and the experimental isotopic distributions of Ag_{22} .

The overall structure of Ag_{22} : A) Unit cell with a tetragonal arrangement; B) top view; C) side view. Labels: red, blue and pink = Ag, yellow = S, orange = P, green = Cl, gray = C and white = H.

Chemistry of clusters

Reactions of clusters Reactions <u>between</u> clusters

Inter-cluster reactions

Article

pubs.acs.org/JACS

Intercluster Reactions between Au₂₅(SR)₁₈ and Ag₄₄(SR)₃₀

K. R. Krishnadas, Atanu Ghosh, Ananya Baksi, Indranath Chakraborty,[†] Ganapati Natarajan, and Thalappil Pradeep^{*}

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India

S Supporting Information

$A + B \square C + D$

Energies for the substitution reaction of (A) Au in $Ag_{44}(SR)_{30}$, (B) Ag in $Au_{25}(SR)_{18}$ and (C) the overall reaction energies (in eV) as a function of their positions in product clusters, $Au_xAg_{44-x}(SR)_{30}$ and $Au_{25-x}Ag_x(SR)_{18}$ for x=1

(A) $\begin{array}{c} \text{Location of Au in} \\ \text{Au}_{X}\text{Ag}_{44x}(\text{SR})_{30} \end{array}$	∆E/eV				
Icosahedron (I)	-0.72	(B) $Au_{25-x}Ag_{x}(SR)_{16}$		ΔE/eV	
Dodecahedron: cube vertex	-0.14	Central atom	n (C)	+0.71	-
Dodecahedron: cube face (D _{cf})	-0.32	Icosahedron	ı (I)	10.25	
Staples (S)	-0.48	Staples (S)	+0.44	
(C)	Locations of Au in Au _x Ag _{44-x} (SR) ₃₀				
Location of Ag in Au _{25 x} Ag _x (SR) _B	I	D _{cv}	D _đ	S	
Location of Ag in Au _{25 x} Ag _x (SR) _B C	I -0.0Ъ	D _{cv} +0.564	D _{cf} +0.388	S +0.226	
Location of Ag in Au _{25 x} Ag _x (SR) _B C	I -0.0Ъ -0.486	D _{cv} +0.564 +0.093	D _{cf} +0.388 -0.083	S +0.226 -0.245	

Shell closure in intercluster reactions

Krishnadas et al., ACS Nano 2017

Nanfeng Zheng et al. Nature Communications, 2013

Ag₂₅-Au₂₅ experiments

K. R. Krishnadas et al. Nature Commun. 2016

Reaction between Au₂₅(PET)₁₈ and Ag₂₅(DMBT)₁₈

Evolution of alloy clusters from the dianionic adduct, [Ag₂₅Au₂₅(DMBT)₁₈(PET)₁₈]²⁻

DFT-optimized structure of [Ag₂₅Au₂₅(DMBT)₁₈(PET)₁₈]²⁻¹

How do we comprehend this?

Ball and stick structure

A view of gold methly thiolate [25]aspicule $(Au_{25}(SMe)_{18})$. Gold atoms colored gold, sulfur atoms by yellow, carbon dark gray, hydrogen atoms as white and (b) with the gold and sulfur atoms alone.

Shell Structure

 $(C)S_{12}@S_{6}$

Terminologies

Aspicules

(D1-3,D2-3)-di(2-phenylethylthiolato), 16(methylthiolato)-auro-25 aspicule(1-) $(D1-3,D2-3)-(PET)_2, (SMe)_{16}-auro-25 aspicule(1-)$

 $R-(SMe)_{44}$ -auro-102 aspicule(0) and L-(SMe)₄₄-auro-102 aspicule(0)

Cluster dimers

Ananya Baksi et al. Chem. Commun. 2016

Shridevi Bhat et. al. J. Phys. Chem. Lett. (2017)

ESI MS of the reaction mixture

* peaks for the dimers (at higher time, the monomeric peaks due to Au-Ag exchange also arise). Au₂₅ was kept in excess.

Molar ratio of two clusters= 1:1

Kinetics of the exchange (monitored on the Ag₂₅ side)

Cluster dynamics

They are indeed molecules!

K. R. Krishnadas, et al. Acc. Chem. Res. 2017

Article

pubs.acs.org/accounts

Interparticle Reactions: An Emerging Direction in Nanomaterials Chemistry

K. R. Krishnadas, Ananya Baksi,[†] Atanu Ghosh, Ganapati Natarajan, Anirban Som, and Thalappil Pradeep^{*®}

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) Indian Institute of Technology Madras, Chennai 600 036, India

CONSPECTUS: Nanoparticles exhibit a rich variety in terms of structure, composition, and properties. However, reactions between them remain largely unexplored. In this *Account*, we discuss an emerging aspect of nanomaterials chemistry, namely, interparticle reactions in solution phase, similar to reactions between molecules, involving atomically precise noble metal clusters.

SCIENCE ADVANCES | RESEARCH ARTICLE

CONDENSED MATTER PHYSICS

Rapid isotopic exchange in nanoparticles

Papri Chakraborty¹, Abhijit Nag¹, Ganapati Natarajan¹, Nayanika Bandyopadhyay¹, Ganesan Paramasivam¹, Manoj Kumar Panwar¹, Jaydeb Chakrabarti², Thalappil Pradeep¹*

Rapid solution-state exchange dynamics in nanoscale pieces of matter is revealed, taking isotopically pure atomically precise clusters as examples. As two isotopically pure silver clusters made of ¹⁰⁷Ag and ¹⁰⁹Ag are mixed, an isotopically mixed cluster of the same entity results, similar to the formation of HDO, from H₂O and D₂O. This spontaneous process is driven by the entropy of mixing and involves events at multiple time scales.

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

ESI MS of **A**) ${}^{107}\text{Ag}_{25}(\text{DMBT})_{18}$ and **B**) ${}^{109}\text{Ag}_{25}(\text{DMBT})_{18}$. Insets shows the respective isotope patterns.

Papri Chakraborty, et. al. Science Advances 2018

Supramolecular chemistry

Papri Chakraborty, et,. al. ACS Nano 2018

Figure 1. A) (a) Full range ESI MS, (b) experimental and calculated isotope patterns and (c) DFT optimized structure of $[Ag_{29}(BDT)_{12}]^{3-}$ cluster. **B) (a)** ESI MS of $[Ag_{29}(BDT)_{12}(C_{60})_n]^{3-}$ (n=1-4) complexes, (b) experimental and calculated isotope patterns of $[Ag_{29}(BDT)_{12}(C_{60})_4]^{3-}$ and (c) schematic of the possible structure of $[Ag_{29}(BDT)_{12}(C_{60})_4]^{3-}$.

Figure 3. NMR of (a) C_{60} showing peak at 143.59 ppm, (b) the adducts at a cluster:fullerene molar ratio of 1:4 showing peak at 143.03 ppm for the C_{60} molecules in bound state and (c) the adducts at an excess concentration of C_{60} (cluster:fullerene molar ratio of 1:15) showing a predominant peak for free C_{60} (143.59 ppm) and a less intense peak for bound C_{60} (143.03 ppm).

Isomerism in supramolcular adducts

Abhijit Nag, et al. JACS 2018

Energy Resolved Fragmentation of Ag₂₉BDT₁₂∩(X-CD)³⁻

Assemblies and superstructures

Papri Chakraborti, et. al., submitted

Amrita Chakraborty, et. al. Angew. Chem. 2018

Ag_{40} and Ag_{46} with the same shell

M. Bodiuzzaman, et. al. Angew. Chem. Int. Ed. 2018

Sensors Catalysis Energy harvesting - Solar cells

Summary

- Atomically precise clusters is a new area of materials science
- Chemistry of these systems show new excitements
- Borromean ring diagram of clusters can be used to understand such reactions
- Their extremely fast solution state dynamics is a puzzle
- They show promising properties useful for applications
- Clusters are indeed molecules
- New materials are coming !

Clean water through advanced materials

Department of Science and Technology

Thank you

A Leader in Advancing Green Chemistry & Green Engineering Concepts

2017 Impact Factor: 6.140

Editor-in-Chief: David Allen University of Texas, Austin

Global Team of Editors:

lulie Carrier	Nicholas Gathergood Jinlong Gong	
Iongxian Han	Bing Joe Hwang Peter Licence	
Michael Meier	Audrey Moores	Thalappil Pradeep
lieshan Qiu	Bert Sels	Bala Subramaniam
Michael Tam	Lina Zhang	

ACS Sustainable Chemistry & Engineering invites Letters, Articles, Features, and Perspectives (Reviews) that address grand challenges of sustainability in the chemical enterprise and advance principles of Green Chemistry and Green Engineering.

@ACSSustainable

Examples of topics in the journal's scope include:

- Green Chemistry
- Green Engineering & Manufacturing
- Biomass or Wastes as Resources
- Renewable Energy
- Life-Cycle Assessment

pubs.acs.org/sustainable