Diphosphine-Protected Au₂₂ Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal Zili Wu,[†] Guoxiang Hu,[‡] De-en Jiang,[‡] David R. Mullins,[†] Qian-Fan Zhang,[§] Lawrence F. Allard, Jr.,^{||} Lai-Sheng Wang,[§] and Steven H. Overbury[†] †Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States ‡Department of Chemistry, University of California, Riverside, California 92521, United States §Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States ||Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States DOI: 10.1021/acs.nanolett.6b03221 Nano Lett. 2016, 16, 6560-6567 ## Controlling Gold Nanoclusters by Diphospine Ligands Jing Chen, Qian-Fan Zhang, Timary A. Bonaccorso, Paul G. Williard, and Lai-Sheng Wang* Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States #### Total structure of the Au₂₂(L⁸)₆ cluster ### Core structure of the Au₂₂(L⁸)₆ cluster Background # Electronic and optical properties of the Au₂₂[1,8-bis(diphenylphosphino) octane]₆ nanoclusters disclosed by DFT and TD-DFT calculations Francesco Muniz-Miranda $^1\cdot$ Davide Presti $^1\cdot$ Maria Cristina Menziani $^1\cdot$ Alfonso Pedone 1 Furthermore, the cluster also possesses the unique peculiarity of having 8 Au atoms on the surface of the metal core that are not engaged in covalent bonds with the organic ligands. These atoms could possibly be exploited in catalysis, and we found that their almost vanishing partial charges differ considerably from those of nearby atoms (which are markedly negative). ## In this paper - The catalytic behaviour of a $Au_{22}(L^8)_6$ cluster with in situ uncoordinated Au sites supported on TiO_2 , CeO_2 , and Al_2O_3 is explored. - Stability of the supported Au₂₂ nanoclusters was probed structurally by in situ extended X-ray absorption fine structure (EXAFS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and their ability to adsorb and oxidize CO was investigated by IR absorption spectroscopy and a temperature-programmed flow reaction. - Low-temperature CO oxidation activity was observed for the supported pristine Au₂₂(L⁸)₆ nanoclusters without ligand removal. - Density functional theory (DFT) calculations confirmed that the eight uncoordinated Au sites in the intact $Au_{22}(L^8)_6$ nanoclusters can chemisorb both CO and O_2 . - This work is the first clear demonstration of a ligand-protected intact Au nanocluster that is active for gas-phase catalysis without the need of ligand removal. # **Synthesis and Characterization** (A) UV-Vis spectrum of $Au_{22}(L^8)_6$ measured in CH_2Cl_2 ; (B) MS pattern for $Au_{22}(L^8)_6$, insert shows the isotopic pattern for $[Au_{22}(L^8)_6 + 4H]^{3+}$. CO conversion (%) (A,B) HAADF-STEM images of as-synthesized Au₂₂(L⁸)₆-TiO₂ in different magnifications. TOF of the cus Au atoms in the as-synthesized Au₂₂Ti-295 sample is calculated to be ~0.02 s⁻¹ for CO oxidation at 303 K. TOF for a typical Au-TiO2 nanocatalyst (0.023 s⁻¹). for different temperature treated Au₂₂(L⁸)₆-TiO₂ samples (C) and the as-synthesized Au₂₂(L⁸)₆ supported on TiO₂, CeO₂, and Al₂O₃ (D). The light-off curve from as-synthesized Au₂₅(SR)₁₈-CeO₂ is also included in the two figures for comparison. Whether the Au_{22} nanoclusters are intact on TiO_2 ? The Au-P distance for unsupported Au₂₂ is 2.28 Å and coordination number is 0.5, which remain unchanged for supported cluster. This suggests that the Au nanoclusters dispersed on the TiO2 surface are similarly coordinated with the diphosphine ligands as in the unsupported case. The core structure of supported cluster also largely resembles that of unsupported cluster as indicated by Au-Au feature. EXAFS spectra of various Au samples and $Au_{22}(L^8)_6$ -TiO₂ sample pretreated at different temperatures in O₂. Spectra from Au foil and Mintek Au-TiO₂ catalyst are also shown as references. In situ HAADF-STEM images of $Au_{22}(L^8)_6$ /TiO₂ at high magnification collected during heat treatment at different temperatures in 300 Torr O₂. (A) IR spectra of CO adsorption at room temperature on $Au_{22}(L^8)_6$ -TiO₂ pretreated in O₂ at different temperatures. (B) IR spectra from CO desorption at room temperature in flowing O₂ on as-synthesized $Au_{22}(L^8)_6$ -TiO₂. QMS profiles of CO_2 isotopomers evolved during $CO + {}^{18}O_2$ over as-synthesized $Au_{22}(L^8)_6$ - TiO_2 (A) and $Au_{22}(L^8)_6$ - Al_2O_3 (B). Mars-van Krevelen (MvK) mechanism CO is reacts with Ti¹⁶O₂ lattice oxygen to form CO₂ The growth of $C^{16}O^{18}O$ at higher temperature is due to the reaction of CO with lattice ^{18}O replenished by the gas phase $^{18}O_2$. Langmuir-Hinshelwood (L-H) mechanism on the cus Au sites Both CO and O_2 are activated and reacted. Front (upper panel) and side (lower panel) views of the $Au_{22}(L^8)_6$ nanocluster (A), CO adsorption (B), and O_2 coadsorption (C). Ligands are omitted for clarity in panels b and c. Color labels - cus Au, blue; other Au, yellow; C, gray; H, white; P, pink; O, red. ### Conclusion - They have deposited the atomically precise, monodispersed $Au_{22}(L^8)_6$ nanoclusters (L^8 = 1,8-bis-(diphenylphosphino) octane) with in situ cus Au sites intactly onto reducible and nonreducible oxide supports (TiO_2 , CeO_2 , and Al_2O_3). - The supported Au₂₂(L⁸)₆ nanoclusters readily exhibit CO adsorption and CO oxidation activity in the as-deposited state without ligand removal. - > DFT models for the unsupported Au₂₂(L⁸)₆ nanocluster suggest that, the fully ligated Au₂₂ nanoclusters present coordinatively unsaturated, neutral Au atoms that are available for bonding to CO and catalysing its oxidation. - CO oxidation activity is enhanced on the more reducible CeO₂ support than TiO₂ and Al₂O₃ and isotope labeling demonstrates that the primary low-temperature pathway is through a Mars-van Krevelen route utilizing the lattice oxygen of the oxide support.