ACSNANO

Size-Dependent Ag₂S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy

Tao Yang,^{†,#} Yong'an Tang,^{‡,#} Ling Liu,[†] Xiaoyan Lv,[†] Qiaoli Wang,[†] Hengte Ke,[†] Yibin Deng,[†] Hong Yang,[†] Xiangliang Yang,[‡] Gang Liu,[§][®] Yuliang Zhao,^{||}[®] and Huabing Chen^{*,†,⊥}[®]

[†]Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China

[‡]National Engineering Research Center for Nanomedicine and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

[§]State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China

^{II}CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Center of Excellence for Nanosciences, National Center for Nanoscience and Technology of China, Beijing 100190, China

¹School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China

DOI: 10.1021/acsnano.6b07866 ACS Nano 2017, 11, 1848-1857 Jyoti Sarita Mohanty 20-05-2017

Introduction:

> Semiconductor metal sulfide nanoparticles such as CuS and Ag_2S nanocrystals have been extensively explored for photo thermal therapy (PTT) or fluorescence imaging because of their good near-infrared (NIR) absorbance, enhanced resistance to photobleaching, effective photoconversion efficiency, ultrasmall size etc.

Unlike single-component theranostic agents, this class of semiconductor nanocrystals only possess either fluorescence or a photothermal effect instead of theranosticcharacteristics.

 \succ Various strategies such as thermal decomposition, microemulsion method, biomimetic approach, sol-gel method, hydrothermal method and microwave method have been developed to synthesize various Ag₂S nanocrystals.

> It is highly desired to explore a facile synthetic approach that is accomplished under mild conditions using clinically acceptable ingredients, thereby satisfying fundamental theranostic demands.

 \succ In this paper, they have demonstrated the multifunctional Ag₂S nanodots (Ag₂SNDs) as a theranostic agent. These NDs are synthesized through precisely controlled growth within clinically acceptable human serum albumin (HSA) nanocages.

Synthesis:

Scheme 1. Schematic Illustration of Theranostic Ag₂S Nanodots with Clinical Potential Synthesized through Precisely Controlled Growth in Albumin Nanocages.

Figure 1. (A) Absorption spectra of Ag_2S -NDs synthesized with the Ag:S ratio of 1:2 at different reaction times. (B) Their absorbance at 785 nm at different reaction times during 720 min and the corresponding first derivative curve. (C-E) TEM images of Ag_2S -NDs synthesized with the Ag:S ratio of 1:2 at various reaction times: (C) 5 min; (D) 60 min; (E) and 240 min.

Figure 2. (A) Absorption spectra of Ag_2S -NDs synthesized with Ag:S ratios of 1:0.5, 1:1, and 1:2 at 240 min, respectively. (B, C) TEM images of Ag_2S -NDs synthesized with Ag:S ratios of (B) 1:0.5 and (C) 1:1 at 240 min, respectively, HR-TEM images of Ag_2S -NDs synthesized with Ag:S ratios of (D) 1:0.5, (E) 1:1, and (F) 1:2 at 240 min.

Figure 3. A) Absorbance at 785 nm of Ag_2 S-NDs synthesized with HSA concentrations of 5, 10, and 25 mg mL-1 at different time, respectively. TEM images of Ag_2 S-NDs synthesized with HSA concentrations of 5.0 mg mL-1 B), 10.0 mg mL-1 C), and 25.0 mg mL-1 D) after 240 min reaction, respectively. The average diameters of Ag_2 S-NDs synthesized with HSA concentrations of 5 mg mL-1, 10 mg mL-1, and 25.0 mg mL-1 are 9.3 ± 0.6 nm, 9.4 ± 0.4 nm, and 9.8 ± 0.4 nm, respectively.

Figure 4. (A) Fluorescence spectra of Ag_2S -NDs with diameters of 4.1, 7.9, and 9.8 nm. (B) Temperature elevations of Ag_2S -NDs with diameters of 4.1, 7.9, and 9.8 nm at a concentration of 1.0 mM Ag under 5 min irradiation at 785 nm. (C) Photothermal conversion efficiency of 9.8 nm Ag_2S -NDs, which was calculated to be 35.0%. (D) XRD pattern of Ag_2S NDs. (E) XPS analysis of Ag_2S -NDs. (F) Size distribution of Ag_2S -NDs using DLS.

Figure 5. (A) Fluorescence mapping of Ag_2S -NDs at various concentrations in the NIR-II region. (B) PA mapping of Ag_2S -NDs at various concentrations. (C) Temperature elevation of Ag_2S -NDs under five irradiation/cooling cycles. (D) Biodistribution of Ag_2S -NDs at a dose of 50.0 µmol kg-1 Ag at 24 h postinjection. (E) NIR fluorescence imaging of 4T1-tumor-bearing mice treated with Cy7.5-labeled Ag_2S -NDs at a dose of 50.0 µmol kg-1 Ag at 72 h postinjection. (F) Long-term distributions of Ag_2S -NDs in various major tissues at a dose of 50.0 µmol kg-1 Ag during 30 days postinjection.

Figure 6. (A) In vivo NIR-II fluorescence imaging and (B) their calculated intensity in 4T1tumor-bearing mice treated with Ag_2S -NDs at a dose of 50.0 µmol kg-1 Ag during 48 h postinjection. (C) In vivo PA imaging (few PA signals from oxyhemoglobin and deoxyhemoglobin before injection (D) their calculated intensity in the 4T1-tumor-bearing mice treated with Ag_2S -NDs at a dose of 50.0 µmol kg-1 Ag during 24 h postinjection.

Summary

 \Box Ag₂S-NDs with well-defined nanostructure were synthesized through precisely controlled growth of Ag₂S in albumin nanocages which is used as a theranostic agent for multimodal imaging and simultaneous photothermal therapy.

 \Box The particle size of Ag₂S-NDs was precisely regulated through control of the reaction time and initial ratio of reactants.

 \Box Ag₂S-NDs possess size dependent NIR-II fluorescence intensity, photothermal effect.

 \Box Ag₂S-NDs exhibit the collective characteristics of ideal resistance to photobleaching, good cellular uptake, preferable tumor accumulation, and in vivo elimination, thereby enabling Ag₂S-NDs to generate ultrasensitive fluorescence imaging in the NIR-II region and PA imaging.

I hank you **Luank λou**