

Received: July 13, 2017 Published: August 18, 2017

Polyoxometalate, Cationic Cluster, and γ -Cyclodextrin: From Primary Interactions to Supramolecular Hybrid Materials

Υ

Mhamad Aly Moussawi,[†] Nathalie Leclerc-Laronze,[†] Sébastien Floquet,[†] Pavel A. Abramov,^{⊥,#} Maxim N. Sokolov,^{⊥,#} Stéphane Cordier,[§] Anne Ponchel,[‡] Eric Monflier,[‡] Hervé Bricout,[‡] David Landy,[∥] Mohamed Haouas,^{*,†} Jérôme Marrot,[†] and Emmanuel Cadot^{*,†}

[†]Institut Lavoisier de Versailles, UMR 8180, UVSQ, Université Paris-Saclay, 78035 Versailles, France

[§]Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1, 35042 Rennes, France

[‡]Unité de Catalyse et Chimie du Solide, UMR 8181, Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille 1, 62300 Lens, France ^{||}Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, 59140 Dunkerque, France

¹Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia [#]Novosibirsk State University, Novosibirsk 630090, Russia

Abhijit Nag 28/10/2017

Different types of polyoxometalates

Applications

pubs.acs.org/JACS

Complexation of Polyoxometalates with Cyclodextrins

Yilei Wu,[†] Rufei Shi,^{†,||} Yi-Lin Wu,[†] James M. Holcroft,[†] Zhichang Liu,[†] Marco Frasconi,[†] Michael R. Wasielewski,[†] Hui Li,^{*,†,‡} and J. Fraser Stoddart^{*,†}

[†]Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States [‡]Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081,

P. R. China

^{II}Department of Chemistry, Loras College, 1450 Alta Vista Street, Dubuque, Iowa 52001, United States

Received: November 21, 2014 Published: March 10, 2015

Host–Guest Complexes

International Edition: DOI: 10.1002/anie.201412485 German Edition: DOI: 10.1002/ange.201412485

Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin**

Khaleel I. Assaf, Merve S. Ural, Fangfang Pan, Tony Georgiev, Svetlana Simova, Kari Rissanen,* Detlef Gabel,* and Werner M. Nau*

Angew. Chem. Int. Ed. 2015, 54, 6852-6856

In this paper

- They showed the existence of relevant supramolecular associations between γ-CD and POM and between γ-CD and {Ta₆} separately in aqueous solutions as well as in the solid state.
- Most importantly, They demonstrated that such interactions could be combined in a rational way to give rise to ordered supramolecular hybrid organic-inorganic network based on [P₂W₁₈O₆₂]⁶⁻, {Ta₆}²⁺, γ-CD as primary building units.

Structural representation of the molecular components used as building blocks: (a) Dawson anion $[P_2W_{18}O_{62}]^{6-}$ (POM), (b) γ -cyclodextrin $C_{48}H_{80}O_{40}$ (γ -CD), and (c) octahedral cluster $[Ta_6Br_{12}(H_2O)_6]^{2+}$ ({Ta₆}).

Structural representation of the supramolecular POM@nCD along their X-ray diffraction analysis showing (a) the 1:1, (b) 1:2, and (c) 1:3 arrangements.

Mixed representations of the solid-state structure of the supramolecular host–guest { $[Ta_6Br_{12}(H_2O)_6]@2\gamma-CD$ }²⁺ complex: (a) side view and (b) top view highlighting close interactions between inner H-3 hydrogen (white sphere) and four bromide ligands (yellow sphere) with H···Br = 2.83 Å; (c) focus on the intermolecular hydrogen-bonding network involving the four in plane aquo ligands of the cluster and the hydroxo groups of γ -CD secondary faces (O···O = 3.0–3.1 Å).

ESI-MS spectra of the inclusion compounds in aqueous solution. (a) POM@3CD showing the 1:1 and the 1:2 adducts while the 1:3 complex is not observed. (b) $\{Ta_6\}$ @2CD containing the m/z peak related to the 1:2 (red trace) and 1:1 (green trace) adducts. The side peaks separated from each other by m/z = 9 are unambiguously attributed to either hydrated or dehydrated complexes.

Microcalorimetric titration data obtained at 298 K from sequential injections of 3.33 mM γ -CD solution into a 0.33 mM [Ta₆Br₁₂(H₂O)₆]Br₂ solution showing ITC thermogram (left) and isotherm (right). Dots and full lines correspond to experimental and calculated heats obtained from thermodynamic parameters describing a two-step sequential binding process (bottom).

Cyclovoltammograms of $[Ta_6Br_{12}(H_2O)_6]^{2+}$ (0.5 mM, 298 K, scan rate 10 mV s⁻¹; 2.5 × 10⁻² mol L⁻¹ HClO₄ aqueous solution) in the presence of increasing amounts of γ -CD (from 0 to 5 equiv). Inset: plot of the first anodic peak potential versus equivalent number of γ -CD showing a break point for the stoichiometric conditions.

NMR DATA

Figure S19. UV-vis spectra of $[Ta_6Br_{12}(H_2O)_6]^{2+}$ aqueous solution in presence solution in presence 0, 2, 4 and 10 γ -CD equivalents. For amount of γ -CD upper than 2 equivalents, the UV-vis features of the $\{Ta_6\}^{2+}$ cluster remain almost unchanged.

Structural representations resulting from the single-crystal X-ray diffraction analysis of the three-component system $\{Ta_6@2CD\cdotPOM\}$: (a) tubular chain showing periodic alternation of the ditopic cation $\{Ta_6@2CD\}^2 + \text{ and the } [P_2W_{18}O_{62}]^{6-}$ POM running along c axis with c = 89.17 Å; (b) highlight of the tubular chain packing in the ab plane; (c) POM moieties within the tubular chain are symmetrically related through 41 helicoidal axis generating successively four equivalent POM units colored in yellow, green, red, and blue, respectively; (d) highlight of two POM units sandwiching the $\{Ta6\}^2$ + cluster through short hydrogen bonds such as O–O = 2.64 Å (the two γ -CDs have been omitted for clarity).

ITC thermograms (upper part) and isotherms (lower part) for the titration of a mixture of γ -CD (22.5 μ M) and $[Ta_6Br_{12}(H_2O)_6]^{2+}$ (90 μ M) by a 200 μ M POM solution. Dots correspond to the experimental heats. Red line corresponds to the theoretical heats when considering the presence of {Ta₆}@CD, {Ta₆}@2CD, POM[{Ta₆}@CD], POM[{Ta₆}@CD]₂, and POM[{Ta₆}@CD]₃.

Conclusion

- > They have shown that recognition process of γ -cyclodextrin in host-guest binding can be used for building hierarchical noncovalent materials using POMs and octahedral clusters.
- > They have reported the discovery of a remarkable versatility featuring interactions between the Dawson anion $[P_2W_{18}O_{62}]^{6-}$ and the primary portal of γ -CD, allowing the selective isolation of the 1:1, 1:2, or 1:3 adducts in the solid state.
- > They have studied on the first inclusion complex built from a cationic octahedral cluster $[Ta_6Br_{12}(H_2O)_6]^{2+}$ and γ -CD wherein the structural model displays the conventional host-guest 1:2 assembly involving close intermolecular contacts.
- Finally, both building blocks, i.e., the ditopic supramolecular cation {[Ta₆Br₁₂(H₂O)₆]@2CD}²⁺ and the Dawson-type anion, react together to give a three-component, well-ordered hybrid material derived either as a supramolecular single crystals.