

Atomically Precise Site-Specific Tailoring and Directional Assembly of Superatomic Silver Nanoclusters

Zhao-Yang Wang,[†] Meng-Qi Wang,[†] Yan-Ling Li,[†] Peng Luo,[†] Tong-Tong Jia,[†] Ren-Wu Huang,[†] Shuang-Quan Zang,^{*,†}[©] and Thomas C. W. Mak^{†,‡}[©]

[†]College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China [‡]Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories Hong Kong SAR, China

nature materials

Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice

Bokwon Yoon¹, W. D. Luedtke¹, Robert N. Barnett¹, Jianping Gao¹, Anil Desireddy², Brian E. Conn², Terry Bigioni² and Uzi Landman^{1*}

NATURE MATERIALS | VOL 13 | AUGUST 2014 |

Chul-Ho Lee,^{†,‡,§} Lian Liu,[‡] Christopher Bejger,[†] Ari Turkiewicz,[†] Tatsuo Goko,[‡] Carlos J. Arguello,[‡] Benjamin A. Frandsen,[‡] Sky C. Cheung,[‡] Teresa Medina,^{||} Timothy J. S. Munsie,^{||} Robert D'Ortenzio,^{||} Graeme M. Luke,^{||} Tiglet Besara,[⊥] Roger A. Lalancette,^V Theo Siegrist,^{⊥,#} Peter W. Stephens,^O Andrew C. Crowther,[†] Louis E. Brus,[†] Yutaka Matsuo,[¶] Eiichi Nakamura,[¶] Yasutomo J. Uemura,[‡] Philip Kim,⁺ Colin Nuckolls,[†] Michael L. Steigerwald,[†] and Xavier Roy^{*,†}

dxdoi.org/10.1021/ja5098622 | J. Am. Chem. Soc. 2014, 136, 16926-16931

pubs.acs.org/JACS

Face Centered Cubic

Michael L. Steigerwald,* and Colin Nuckolls*

(a)

Letter

pubs.acs.org/JACS

Weaving Nanoscale Cloth through Electrostatic Templating

Anouck M. Champsaur,[†] Cécile Mézière,[‡] Magali Allain,[‡] Daniel W. Paley,^{†,§} Michael L. Steigerwald,^{*,†} Colin Nuckolls,^{*,†©} and Patrick Batail^{*,†,‡}

[†]Department of Chemistry, Columbia University, New York, New York 10027, United States [‡]Laboratoire MOLTECH, CNRS UMR 6200, Université d'Angers, 49045 Angers, France [§]Columbia Nano Initiative, Columbia University, New York, New York 10027, United States

Building Diatomic and Triatomic Superatom Molecules

Department of Chemistry, Columbia University, New York, New York 10027 United States

Anouck M. Champsaur, Alexandra Velian, Daniel W. Paley, Bonnie Choi, Xavier Roy,*

- N- Heterocyclic linker for assembly formation
- Cluster assembled materials have different properties and applications

benzene bis-1,4-isonitrile

Introduction

- Highly stable superatomic silver nanoclusters with atomically precise structure remains a great challenge, and to custom-tailor and assemble them as identical building blocks at the atomic level are even more difficult.
- Tailoring specific sites on a metal cluster surface can be expected to be capable of tuning their stability and functionality. However, variation of protecting motif invariably induces partial or complete dissection, resection, or even reconstruction of the metallic structure
- Controlled-assembly of superatomic clusters or atomically defined metal nanoclusters into extended solids are highly sought, because incorporating these unique building blocks into extended lattices would create more improved or coupled physical properties for application.

This paper

- Here, for the first time, a wide footprint and functional 1,2- dithiolate-o-carborane was employed to protect fcc-Ag₁₄ clusters.
- ✤ The first-formed Ag⁰-containing superatom compound, [Ag₁₄(C₂B10H₁₀S₂)₆(CH₃CN)₈]·4CH₃CN, was prepared via synchronous selfreduction by the 1-thiol-o-carborane ligand.
- Moreover, with such desired superatomic building blocks and length-variable bidentate N-heteroaromatic ligands [pyrazine, dipyridin-4-yl-diazene (dpd), 4,4'bipyridine (bpy), 1,4-bis(4-pyridyl)benzene (dpbz)], we built unprecedented 1D-to-3D superatomic silver clusterassembled materials (SCAM-1,2,3,4) via site-specific and directional covalent-bond connection.

Figure 1. (a) Synthesis of desired Ag₁₄ NCs; note that the (fcc) array (represented by green spheres) of Ag₁₄ superatoms are stabilized by facecappin 1,2-dithiolate-o-carborane (C₂B₁₀H₁₀S₂) ligands. (b) Structural dissection of NC-1. (c) Variable-temperature PXRD patterns of NC-2. Color codes: green and pink = silver; yellow = sulfur; gray = carbon; blue = nitrogen; turquoise = carborane

Assembly and Structures of Superatomic Silver Cluster Networks

1,4-bis(4-pyridyl)benzene

Figure 2. Structural represention of (a) 1,2-dithiolate-o-carborane-capped superatomic silver cluster, (b) 1D helix of SCAM-1, (c) 2D grid network of SCAM-2, (d) 3D porous framework of SCAM-3, and (e) 2-fold interpenetrated porous 3D frameworks of SCAM-4. (f) Variable-temperature PXRD of SCAM-4 from 25 °C to 350 °C.

b

SCAM-3 4,4'-bipyridines.

- Tetragonal
- Assembled with all eight vertices of the fcc cluster coprotected with 4,4;bipyridines
- The second building units (SBUs) can be octahedral cages with six seen as clusters on the vertices and six ligands on the edges

parallel

surface

the

Two-fold interpenetrated porous structure

bcu-type topology

SCAM-4 1,4-bis(4-pyridyl)benzene

Optical Absorption of NC-2,3 and SCAM-4,

Figure 3. (a) Computed optical absorption spectrum of the cluster NC-2 (black) compared to the experimental data (blue). Gray bars show the individual transitions (delta-function-like peaks showing the relative oscillator strengths) (Table S1). The continuous computational spectrum is sums of Gaussian smoothed individual transitions (width of 15 nm). The intensity of the computational spectrum is scaled so that the dominant peaks are approximately of similar intensity.

Figure 4. Variable-temperature emission spectra of (a) solid-state NC-2 (exited at 370 nm) and (b) the evacuated SCAM-4 (excited at 380 nm) from 83 K to 298 K in air. Inset: the corresponding photographs of NC-2 and SCAM-4 under 365 nm UV irradiation.

Conclusion

- 1,2-dithiolate-o-carborane was employed in the ligand shell to protect a 2e fcc-Ag₁₄ superatom.
- The one-pot synthesis involved synchronous Ag⁺ to Ag⁰ by self-reduction of the thiol ligand and the formation of the unstable superatomic silver cluster NC-1.
- Site-specific surface modification of NC-1 with pyridyl-type ligands afforded highly thermostable superatomic clusters.
- various 1D-to-3D superatomic silver cluster-assembled materials were predesigned and obtained through progressively optimized ligand-bridging approach.