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A typical process for bioprinting 3D tissues
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Background
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In this Paper

» 3D printing has been intensively explored to fabricate customized structures
of responsive materials including hydrogels, liquid-crystal elastomers, shape
memory polymers, and aqueous droplets.

> A report on the new method and material system capable of 3D-printing
hydrogel inks with programed bacterial cells as responsive components into
large-scale (3 cm), high-resolution (30 um) living materials, where the cells
can communicate and process signals in a programmable manner.

» The design of 3D-printed living materials is guided by quantitative models that
account for the responses of programed cells in printed microstructures of
hydrogels.

» Further demonstrate novel living devices enabled by 3D printing of
programed cells, including logic gates, spatiotemporally responsive
patterning, and wearable devices.
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Design and 3D printing of large-scale, high-resolution living responsive materials and
devices. a) Schematic workflow of living material design, b) Schematic illustration shows
direct writing of hydrogel inks. ¢) Schematic illustration shows that covalent crosslinks form
among micelles after UV crosslinking.
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a) Phase diagram for the printability of Pluronic F127-DA ink. Optical images of various
architectures generated by 3D printing, including b) a cuboid, c¢) a pyramid, d) a dome, and
e,f) hollow pyramids. Red color denotes hydrogel ink with rhodamine B, and green color
denotes hydrogel ink with fluorescein (scale bars in (b)-(f), 5 mm). g-j) Confocal top-view
images and 3D reconstructed images (insets) of GFP+ bacterial cell-laden hydrogel scaffolds
with a wide range of printing resolutions, including g) 200 pm, h) 100 pm, i) 50 pm, and j) 30
Mm (scale bars in (g)—(j), 500 pum).
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Printability diagrams with different nozzle dimensions. a-c) Phase diagrams for Pluronic
F127-DA ink printability, which contains non-printable (red) and printable (blue) regions.
The tests are carried out with 200 ym (a),100 pym (b), and 30 um (c) in nozzle size.



Cell viability in Pluronic F127-DA UV-crosslinked hydrogel tested by live-dead assay 24 h
after printing. a,c) Fluorescent images of bacterial cells in printed living materials with 200 pm
feature size. b,d) Fluorescent images of bacterial cells in printed living materials with 100 pm
feature size. Red denotes dead cells (resulting from increased uptake of propidium iodide into
membrane damaged/dead cells), while green denotes live cells.
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a) Schematic illustration of a 3D-printed living scaffold that can function as a single-input and
single-output (SISO) Boolean logic gate. b) Schematic illustration of a 3D-printed living scaffold
that can function as a double-input and single-output (DISO) Boolean logic gate. c) Experimental
results of logic gates, indicated by green fluorescence in one layer of the printed hydrogel
containing the output.
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Spatiotemporal patterning of 3D-printed living materials. a) Schematic illustration of 1D-
living structure. b) Spatiotemporal evolution of fluorescence in a straight line of the living
structure (a) from experiments. c¢) Spatiotemporal evolution of fluorescence in a straight line
of the living structure (a) from simulation. d) Quantitative comparison of fluorescence
intensity over time in a straight line of the living structure (a) from experiments (solid dots)
and simulations (dash lines).
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e) Schematic illustration of a 2D-living structure. f) Spatiotemporal evolution of fluorescence in a
segment of the living structure (e) from experiments. g) Spatiotemporal evolution of fluorescence
in a segment of the living structure (e) from simulation.h) Quantitative comparison of
fluorescence intensity profiles over time along rin different rings of the living structure (6 = 22.5°
in (e)) from experiments (solid squares) and simulations (hollow squares)
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Summary and Conclusions

» A new paradigm in 3D printing by using genetically programed cells as active
components to create living materials and devices is reported. This can be a new
4D-printing approach to produce 3D structures with time evolving properties.

» The integrative technology of 3D living printing has the potential to be used as a
general platform where a range of genetically programed cells (for example, cells
with therapeutic production), matrices (for example, biodegradable hydrogels),
and structures (for example, a cartilage shape) can be applied to design more
customized living materials and devices with predictable dynamic functionalities.

» New ingestible devices based on our 3D printing of living materials may be able to
modulate the gut microbiota and treat microbe mediated disease such as obesity
and diabetes.
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