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What is CDI?

How Electrochemical Deionization
Systems Work
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» Capacitive deionization (CDI) is a technology to deionize water by applying an
electrical potential difference over two porous carbon electrodes.

» Liquid is flowing between the high surface area electrode pairs having a potential
difference of 1.0-2.0 V DC.

Image courtesy: M.A. Anderson et al. / Electrochimica Acta 55 (2010)
3845-3856 and Wikipedia.




Why this paper | have chosen or what is the reasons to discuss this
work in the group?

» Water scarcity is becoming a serious issue across the world.

» However, well-developed desalination processes such as reverse osmosis (RO),
electrodialysis (ED), and distillation not only require large-scale infrastructure but
also have a high cost for controlling fouling during operations. Therefore, it is
desirable to develop a novel desalination technology with simple equipment, easy
operation, and high energy efficiency.

» Among the various desalination technologies, capacitive deionization (CDI) is
considered as one of the promising desalination technologies because of its energy-
efficient, ecofriendly, facile operation.

> In this paper desalination was done using brackish water under rapid operation
conditions (up to =30.0 A m—2) which is a constant-current operation condition
that is several times higher than that of previously reported desalination
technologies using battery materials.
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Perhaps surprisingly, this ratio is always smaller than unity regard-
less of the values of resistance R and capacitance C (Fig. S-1b). This sim-
ple model therefore suggests CC operation always consumes less energy
than CV for the same amounts of input charge and for identical
timespans. In addition, energy consumption for either CV or CC mode
strongly depends on the equivalent total resistance R.
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What is this work about

In this paper they have discussed about water purification using RCDI (constant
current) using anion exchange resin coating and the Nafion-coated activated carbon
can selectively adsorb and desorb anion and cation respectively.

Relevance to the group or my work

In this paper they have prepared the Nafion-coated activated carbon which can be
used as +ve particle for dust, also charge measurement of this particle can be done.



In this paper....

» Applications of conventional CDI are limited due to its low salt adsorption capacity
(0.1-15 mg g—1), low charge efficiency (30—70%), and poor cycling stability.

» CDI requires a separate regeneration step to release the absorbed ions on the
electrodes, resulting in an inefficient, time-intensive process.

» To overcome the limitations of these disadvantages, various attempts have been
reported including using novel cell architectures, such as water desalination with a
wire electrode, flow-electrode CDI (FCDI), and multichannel flow stream
membrane CDI.

» In this paper proposes a continuous CDI system based on the rocking-chair ion
movement using Nafion-coated activated carbon electrodes referred to as rocking-
chair capacitive deionization (RCDI), which has a superior desalination rate and
stability compared to previous continuous desalination systems using battery
materials with constant-current operation.



Results and discussion

Preparation of the Nafion-Coated Activated Carbon Electrodes.

Activated carbon + acetylene_black as poly(tetrafluoroethylene)
a conducting agent (PTFE) as a binder
Nafioncoited gy AACHIVATEG
AC electrodes carbon(AC)
0.2 ml of Nafion electrode

was drop casting
on AC electrode
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Figure 1.Schematic diagram of the rocking-chair capacitive deionization (RCDI). RCDI system
consists of a pretreated Nafion-coated activated carbon electrode in channel A, Nafion-coated
activated carbon electrode in channel B, and anion-exchange membrane. During the constant-
current operation in the RCDI, the positive compartment solution is concentrated by the
released cations from the carbon electrode in channel A and by the anions from the channel B
solution driven by diffusion whereas the channel B solution is diluted. Channel A solution is
diluted by the reverse movement of cations and anions during the reverse current operation.
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Figure 2. (a) lllustration of the RCDI module for the desalination tests, and (b) RCDI cell.
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igure 3. Schematic of the cell geometry for the pretreatment electrode (Na-ion-adsorbed electrode)
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Figure 4. Scanning electron microscopy (SEM) images of the pristine activated carbon
(a and b) and Nafion-coated activated carbon electrodes (c—e).
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Figure 5. Effluent conductivity changes of channel A (black solid line) and channel B (blue
dashed line), and curve of the voltage and current vs time during the constant-current
desalination tests (i = =12.5 Am-2) in a voltage range from —1.2 to 1.2 V (a and b) and from
—1.0to 1.0 V (¢ and d). Initial concentration of the NaCl solution was 10 mM.
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Figure 6.(a) Conductivity profiles at different current densities (solid line, channel A;
dashed line, channel B). (b) CDI Ragone plot of the RCDI system with respect to the
source water concentration (10, 20, and 50 mM NaCl) under constant-current
adsorption/desorption operations with a cell voltage range from —1.2 to 1.2 V. CDI
Ragone plot is representative of the salt adsorption capacity (SAC) and average salt
adsorption capacity (ASAR). MCDI data at 10 and 50 mM were constructed from ref

(32).
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Figure 7. Representative stability performance of the RCDI system. Test was conducted for 35
cycles under constant-current adsorption/desorption operations in 10 mM NaCl solution (current
+12.5 Am-2, voltage range from —1.2 to 1.2 V). (a) Changes in the salt adsorption capacity and
charge efficiency during the cycling process. (b) Cell voltage and current vs time plot. (c)
Conductivity changes of the effluent from channel A and channel B.




Conclusion:

¢ It is simple and easy to operate using a Nafion-coated activated carbon
electrode. With the cationexchange resin coating, the Nafion-coated activated
carbon can selectively adsorb and desorb cations.

% Continuous operation is possible in the RCDI system with the spontaneous
diffusion of anions.

% This system had a high maximum SAC (44.6 mg g—1) compared to the
conventional CDI system.

% It is possible for the system to operate in a rapid current operation (maximum
=+ 30.0 A m—2) with excellent cycling stability.

% The RCDI can be easily scaled up by increasing the size of the electrodes;
moreover, it is possible to reduce the installation expense by replacing the
Nafion with an inexpensive cation-exchange resin.

% RCDI in this study can be used in a variety of applications such as desalination

and water softening as well as an analysis tool in CDI technologies.







