Instrumental technique

XPS peak fitting

M.P. Kannan

An comparison between commonly used peak background

Why peak fitting is essential tool for XPS data analysis?

-Backgrounds to spectra containing both doublet pairs coupled with a variety of chemical shifts represent the greatest challenge to modeling XPS spectra.

 All the peaks modeled in Figure 1 are due to chemical shifts.
Electrons ejected from s-subshells generally appear as chemically shifted primary peaks.

Figure 1: C 1s region measured from a nylon sample.

Linear Background (I)

Figure 2: Example of a linear background type applied to a Ti 2p doublet pair.

- C 1s peaks can be approximated by a linear background type:

$$L(E) = I_1 \frac{(E_2 - E)}{(E_2 - E_1)} + I_2 \frac{(E - E_1)}{(E_2 - E_1)}$$

Where:

 E_1 and E_2 are two distinct energies and I_1 and I_2 are two intensity values

Shirley Background (S)

-The Shirley algorithm uses information about the spectrum to construct a background sensitive to changed in the data.

-The essential feature of the Shirley algorithm is the iterative determination of a background using the areas marked A1 and A2 to compute the background intensity S(E) at energy E:

$$S(E) = I_2 + \kappa \frac{A2(E)}{(A1(E) + A2(E))}$$

Where κ is $(I_2 - I_1)$

Some problems encountered during shirley background usage

-A common problem with using a Shirley background over such an extended range is that the algorithm produces a background curve that cuts through the data.

Figure 4: Metallic Ti modeled using two regions each defining a Shirley background (upper curve). The lower background curve is the Shirley background computed using the combined peaks. The At% column is computed using an RSF of unity for both peaks in the doublet pair, hence the 1:2 ratio in peak areas p1 and p2.

Blending Shirley and Linear Backgrounds (OS)

-Use of a pure linear or a pure Shirley background over the same interval would require the intensity ratio to be violated and as such represents a less wrong solution used when peak fitting the data.

The background for OS is calculated from a blend of a Shirley and linear backgrounds:

 $OS(E:\lambda,\delta) = S(E-\delta)(1-\lambda) + L(E)\lambda$

Figure 5: Chemically shifted Ti 2p doublet pairs.

Tougaard Background (t)

-Tougaard was designed as a practical background for general use and as such is almost certainly as incorrect as the Shirley and linear background types.

-The background is computed from the measured spectrum S(E) using the integral:

$$T(E) = \int_{E}^{\infty} F(E' - E)S(E')dE'$$

Figure 6: Universal Cross Section Tougaard background.

Flexible Background Shapes based on Cubic Spline Polynomials

Figure 7: An E Tougaard background showing remarkable similarity to a Shirley background shape. The background shape is achieved by adopting a very broad Gaussian loss structure.

Thank you 😳