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Figure: Giant mineral dust particles sampled by the MWAC
samplers at M3 (12°N, 38°W) and M4 (12°N, 49°W) in 2014
and 2015, with their approximate diameters. (A to C) 2014-
M3; (D to F) 2014-M4; (G to 1) 2015-M3; (J to L) 2015-MA4.
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https://www.researchgate.net/publication/40217123_Measurement_and_analysis_methods_for_field-scale_wind_erosion_studies/figures?lo=1
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Fig. 2. Seasonality of atmospheric transport from Africa to the buoy sites. Distribution of travel times for backward trajectories from buoys M3 (red) and M4 (blue)
to the target area (C), for February (A) and August (B). (D) Frequency of the minimum number of deep convective uplift cycles needed for a 100-um particle to travel
from the target area (C) to the sampling buoys M3 (red) and M4 (blue), assuming a constant sedimentation velocity of 400 mm s~ (Table 2), for June to October. All
computations are based on ERA-Interim data during the 10-year period 2006 to 2015.
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Table 1. Sampling duration of MWAC samplers on the dust-collecting buoys at M3 and M4 (Fig. 2), together with statistics on the colocated wind

measurements.
Sampling Sampling Days Minimum wind Maximum wind Average wind
start end sampled velocity (m s™") velocity (m s™) velocity (m s™")
2014-M3 24 November 2013 01 September 2014 281 19 13.6 87+20
2014M4 .............. 28 November 201327January2015 ..................... 4 25 ............................. 45 .................................. 142 .............................. 91118 .......
.2. 0 15M3 .............. 22 NO Vember 2 0 15 .................. 2 9 . MarCh 2016 ...................... 4 32 ............................. 09 .................................. 127 .............................. 67 117 .......

Table 2. Settling velocities after Bagnold (79) and estimates of traveled distance based on favorable summer (strong winds and elevated dust) and
winter (lower wind speeds and elevation) conditions.

Particle Settling Summer: Traveled distance at Winter: Traveled distance at
size (pm) velocity (mm s™') 25 m s~ winds from 7-km altitude 10 m s~' winds from 3-km altitude

100 400 438 km 75 km

200 1000 175 km 30 km

.........................................................................................................................................................................................................................................................



Conclusion:

* Strong winds causing fast horizontal transport greatly enhance the distance over
which the dust travels

* Transport of individual large dust particles is further aided by strong turbulence,
keeping them in suspension for a longer time

* Particle charge affects their dynamics and, for negatively charged particles, can
offset a particle’s weight in a downward directed electric field, so keeping it aloft for
longer

 Thunderstorms or tropical cyclones can carry dust particles to great heights,
strongly increasing their horizontal travel distance if the particles can leave the
storm through the anvil or upper-level outflow region without being rained out.



High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by
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Figure 2. (a) Schematic (top) and digital camera image (bottom) of TRAP filter experimental setup. The PM counter sensor is placed in the left side
of the chamber, while the PM is generated from incense at the right side of the chamber. TRAP filter is sandwiched between the two chambers. (b)
Transient evolution of PM2.5 removal performance for (i) only ionizer on (5 V), (ii) only TRAP filter on (10 V), (iii) both trap filter and ionizer on,
and (iv) both off. The PM density showed saturation at 1000 ug/m® due to detector limit. (c) Transient evolution of PM2.5 density for various
TRAP filter voltage condition. (d) Magnified view of graph (c) after 120 s from the PM detection for various TRAP filter voltage conditions.
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Conclusion:
* First environmental application demonstration of Ag nanowire percolation network

* Electrical type of PM2.5 filter that is transparent, reusable, and active using a highly
conductive and transparent Ag nanowire percolation network electrode

* Compared with previous PM filter study using short-range intermolecular force in polar
polymeric nanofiber, the TRAP filter uses both long-range electrostatic force and short-
range van der Waals force when low voltage is applied on the metal nanowire network
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Metal-organic frameworks with photocatalytic
bactericidal activity for integrated air cleaning

Ping Li' Jiazhen Li!, Xiao Feng1, Jie Li' Yuchen Hao!, Jinwei Zhang1, Hang Wang1, Anxiang Yin! Junwen Zhou!
Xiaojie Ma' & Bo Wang® '
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Supplementary Figure 2 a FT-IR spectra, b TG curve, ¢ N; sorption 1sotherms measured at 77 K, d
SEM image and size distribution (insert), e-h elemental mapping analysis, i TEM image of ZIF-8.
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Fig. 2 Photocatalytic disinfection performance of ZIF-B (zinc<imidazolate MOF). a Disinfection performance comparison among five metal-organic
framewaorks (MOFs). b Inactivation kinetics of E. coli in the presence of ZIF-8. € Inactivation efficiency against E. coli in the presence of Znd+ @3 mg L-1), 2-
miethyimidazole (H-MelM) (7 mg L~ 1), and ZIF-B (500 mg L-'), respectively. d Disinfection performance comparison among ZIF-8, Ti0,, and Zn0 under-
simulated solar imadiation. In the disinfection pedormance the emor bars are caloulated via repeating the measurements for three times and the black
circle represents no measurable levels of bacteria in the cutture rmedium
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Fig. 3 Band-structure characterization and photocatalytic disinfection mechanism of ZIF-8 (zinc-imidazolate MOF). a The band positions of ZIF-B with
respect to the reactive oxygen species (RO5) formation potential. Conduction band (CB} and wvelence band (VEB) represent conduction band and vaence
band respectively. b Electron paramagnetic resonance (EPR) spedra of ZIF-8 at 77 Kindark and under light iradiation (300 nm <4 < MO0 nm } in differsnt
atmosphere. € EPR spectra of DMPO —e0.~ for ZIF-8 under light imadiation and in dark d Steady-state concentration of «0.~ caloulated from the decay of
nitroblue tetrazolium (MBT} and hydrogen peroxide (H;0;) acoumulation over time, respectively. & The first <order disinfection rate on ZIF-8 with differsnt
scavengers (IPA — #0H, 1-His — '0,, Cr(V1) = e~, Oxalate — h*, 50D — 0., CAT — H,0,). f Dependence of the amount of rleased H,0, by ZIF-8 on
the wavelength of incident light and the ultraviolet-visible (L -vis} spectra of ZIF-8. The error bars are caloulated via repeating the measurements for
three times. 500 supernoxide dismutase, IPA isopropanal, DMPO 5 5-diemthyl- 1-pyrroline N-oxide
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Supplementary Figure 20. a, b SEM images of NWF, c, d, e SEM images of MOFilter and size

distribution of ZIF-8 particles grown on fibers (insert). f, g corresponding elemental mapping images.
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Fig. 4 Characterization of meta-organic framewaork (MOF)-based filter (M OFilter) and its air cleaning performance. a X-ray diffraction (XRD) patterns of
non-woven fabric (NWF) and MOFilter. b Optical photo and scanning electron microscopy (SEM) images of MOFilter (scale bar, Spm (top); 1pm
(bottom)). € Schematic representation of the air cleaning system. d Comparison of the particulate matter (PM) filtration effidency between MOFilter and
NWF. e Comparison of the air disinfection performance between MOFilter and NWF under light and dark conditions, respectively. f Air disinfaction
performance of MOFiter continuously used for five cycles. The error bars are cakulated viz repeating the measurements for three times
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Fig. 5 Antibacterial performance comparson between metal-organic framework (MOF)-based filter (MOFilter) mask (MM) and commerca mask (CM).
a Biozerosol generation apparatus and optical images of trilaminar MOFilter mask b, ¢ Escherichia coli levels residual on top, inner and bottom layers of MM
and CM, respectively, after 30 min of light iradiation. The number of vizble cells in b is determined from szline eluent used for collecting living bacteriz on
each layer of mask after reaction. The bacterial colonies residual on eluent-treated mask are showninc. The top, inner, and bottom layers are denoted as T,
| and B, respectively. The emor bars are calculated viz repeating the measurements for three times



Conclusion:

* Photocatalytic disinfection activity of ZIF-8 and its potential use in air purification was
explored

* The charge-trapping centers Zn+ can be photogenerated on MOF surface via LMCT, and
effectively active O, to form ¢O,- and related ROS like H,0,

* Furthermore, ZIF-8 is processed as filters with the combination of PM filtration and
bacteria-killing function

» ZIF-8-based filter could offer strong and comprehensive protection against air hazards
including PM and pathogens aerosols



