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Tracking Airborne Molecules from Afar: Three-
Dimensional Metal-Organic Framework-
Surface-Enhanced Raman Scattering Platform
for Stand-Off and Real-Time Atmospheric
Monitoring
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» Rise in polluted air, it is necessary to monitor the changes in the concentration of
these pollutants

» Remote sensing, fast and portable

» Laser induced decarboxylation releases CO,, this CO, can be adsorbed by

neighbouring MOF@Agnp and can be tracked
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Tig. 1. Schematic diagram of the apparatus used to observe atmo-

spheric Raman scattering.
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Fig. 2. Photomulitiplier signal from atmospheric backscatter as

function of wavelength, Each data point represcnts a single measure-
ment obtained with one laser pulse,
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Experimental section

Synthesis and Purification of Silver Nanocubes

20 mL of 1,5-pentanediol in a 100 mL round bottomed flask was heated to 190 °C for 10
min. A 250 ulL portion of poly(vinylpyrrolidone) precursor was added to flask dropwise
every 30 s, while 500 pL silver nitrate precursor was injected every minute using a quick
addition. The addition process continued until the greenish coloration of the reaction
mixture faded off. Further purified by multiple centrifugation steps and filtration.

Synthesis of Ag@ZIF Core-Shell

A 250 pL portion of Zn(NO,), (25 mM) was added to a vial of 1.3 mL of methanol
and stirred at 500 rpm for 5 min. A 250 ulL portion of methanolic 2-methylimidazole
(50 mM) was then added, followed by the immediate addition of 200 uL of Ag
nanocubes solution (4.7 mg/mL, Ag nanocubes can be functionalized with 4-MBT to
have 4-MBT probe internal standard or HCI treated to remove surface groups). The
mixture was stirred for another 90 min at 500 rpm. Excess reagents were removed
by centrifugation, and the core-shell nanocubes were then washed twice with
methanol and then finally redispersed in methanol.
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(A) SEM image of as-synthesized Ag nanocubes and (B) its size distribution (121 +5

nm). (C) Extinction spectrum of colloidal Ag nanocubes.
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3D MOF-SERS platform. (A) (i) SEM image
showing Ag@MOF particles, (ii) cross-sectional
SEM image showing the side view of multilayered
Ag@MOF platform, and (iii) 3D x-y-z SERS image
of a segment of the platform (imaged with 20x
objective lens). (B) (i) Schemes and (ii) cross-
sectional SEM images showing the structure and
how airborne molecules are absorbed and
detected in different platform configurations. Half
of the images in (ii) are overlapped with x-z SERS
hyperspectral images (imaged with 100x objective
lens) showing the penetration of gaseous 4-MBT
into the platform (Ag in the platforms has no 4-
MBT surface groups prior to exposure). (C) (Left)
SEM images overlapped with x-z SERS images
(imaged with 100x objective lens) of Ag@MOF
platforms with increasing thickness and (right)
schemes showing the hotspot and analyte density
within the fixed laser focal volume where
platforms of different thicknesses are used. (D)
Effective SERS active depth and stand-off intensity
(at 2 m) of 4-MBT’s SERS band at 1077 cm™!
obtained from platforms with thickness

ranging from 0.2-9.2 um (using Ag pre-
functionalized with 4-MBT).
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(A)(i) Cross-sectional SEM images, (ii) x-z SERS imaging of the multilayer Ag@MOF substrates of different
thickness (Ag surface is modified with probe molecule 4-MBT), and (iii) their respective cross-sectional
profile tracing 4-MBT 1077 cm-1 signal from region (1) to (2). (B) The full-width half-maximum of the
intensity profiles, showing the efficient SERS-active thickness and (C) SERS intensity of different multilayer
platforms
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Stand-off SERS using 3D MOF-SERS platform. (A) Set-
up of our stand-off SERS system. (B) Stand-off intensity
(at 2 m) of 4-MBT’s 1077 cm™! obtained from platforms
of thickness ranging from 0.2-9.2 um (with Ag pre-
functionalized with 4-MBT). (C) Scheme showing the
stand-off SERS detection of aerosolized 4-MBT (500
ppm, Ag in the platforms has no 4-MBT surface
groups). (D) Real-time 4-MBT intensity obtained in the
stand-off SERS detection using different platforms. (E)
4-MBT intensities obtained at distances from 2 to 10 m
using our Ag@ MOF SERS platform and normal Raman
detection. (F) Partial least-squares calibration graph of
different 4-MBT airborne concentrations detected
using our stand-off SERS system (at 2 m). (G)
Consistent real-time stand-off SERS spectra of 4-MBT
recorded on Ag@MOF substrate for a continuous
period of 300 s after the substrate has reached
saturation.
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Remote SERS-based gas detector. (A) Scheme showing remote tracking of CO, in real time for several
cycles using multilayered Ag@ MOFplatform. (B) Time-resolved SERS intensity profile of 1360 cm™ band,
showing the absorption and detection of CO, in several cycles. (C) (i) Spectroscopic observation of CO,
vibrational modes (shown with respect to internal standard peak of 4-MBT grafted on the Ag particle) in
the detection of CO,, which is not observed in the control experiments with N, flow and no gas (blank), (ii)
Principle component analysis (PCA) score plot of stand-off SERS spectra observed in the presence of CO, or
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Outdoor remote sensing of airborne polycyclic
aromatic hydrocarbon (PAH) mixture. (A) (i) Outdoor
stand-off detection set-up. (B) Scheme showing the
stand-off detection of aerosolized toluene and
naphthalene. (C) Stand-off multiplex spectra obtained
in outdoor condition with natural light, for Nap/Tol
5:95 and 15:85 mixture, with reference to individual
naphthalene and toluene SERS spectra. (D) Spectral
analysis of characteristic signals of the analytes within
the dotted region in (C). (E) Comparison of Nap/Tol
signal intensity ratio between calibration spectra and
outdoor spectra, using 763 and 786 cm™! signals.
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Calibration of multiplex (poly)aromatic hydrocarbon detection (indoor) (A) Stand-
off multiplex SERS spectra obtained with just toluene (Tol), naphthalene (Nap) and
Nap/Tol mixture at different composition for calibration (performed indoor, within
100 pL of Tol aerosol, accounting for 7000 pm Tol and 97-1700 ppm of Nap). (B)
Spectrum deconvolution of the yellow-highlighted area in (A), showing the relative
ratio between Nap 763 cm™ and Tol 786 cm signals at different composition. (C)
Calibrated PLS prediction model constructed from the SERS spectra of various
Nap/Tol composition from 0 to 100% (with a blue-highlighted magnification of
Nap/Tol 85 to 99% region).



Conclusion

+* Real-time stand-off SERS detection of airborne molecules by integrating stand-off
Raman with a 3D Ag@MOF platform possessing micron-scale hotspot volume and
high molecule sorbing ability was achieved.

+» Stand-off SERS system enables rapid quantitative detection of aerosolized
chemicals with parts per billion (ppb) detection limit at a remote distance of 2-10

m.

+* Ability to rapidly track chemical changes in atmospheric content when CO2 gas is
exposed to the platform in repeated cycles.

+» 8-fold lower laser power (<55 mW) than other common stand-off Raman
techniques with ultrahigh laser power of >400 mW






