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In this paper...

They have reported a three-orders-of-magnitude variation of carrier lifetimes in exotic
crystalline phases of gold nanoclusters (NCs) in addition to the well-known face-centered
cubic structure, including hexagonal close-packed (hcp) Aus, and body-centered cubic (bcc)
Au;g NCs protected by the same type of capping ligand.

The bcc Ausg NC had an exceptionally long carrier lifetime (4.7 microseconds) comparable
to that of bulk silicon, whereas the hcp Au;, NC had a very short lifetime (1 nanosecond).

Although the presence of ligands may, in general, affect carrier lifetimes, experimental and
theoretical results showed that the drastically different recombination lifetimes originate in
the different overlaps of wave functions between the tetrahedral Au, building blocks in the
hierarchical structures of these NCs.



Significance of the paper

Understanding the carrier dynamics in ultrasmall (<2-nm) gold nanoclusters is
fundamentally important for their applications in solar energy storage and conversion.

This work showed that like semiconductors, small metallic clusters can absorb light and
create excitons (electron-hole pairs). In ligand-capped gold clusters of 30 to 40 atoms that
adopt the usual face-centered cubic packing, the lifetime of these excitons is ~100
nanoseconds. Despite having similar bandgaps to those of face-centered cubic clusters, a
hexagonal close-packed cluster had a much shorter lifetime and a body-centered cubic
cluster had a longer lifetime comparable to the bulk silicon.

Hence the report first show that atomic packing can controls exciton lifetime.

Relevance to the group

In our group many are working in Au and Ag NCs. We are synthesising some new stable
nanoclusters. So, ultrafast spectroscopy can be effective study to understand the
photophysical properties of these NCs which can explore the application of them.

Also, we have found polymorphic NCs, such as Ag,q, Ag,. One can study the difference in
carrier dynamics of two polymorphic NCs.
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Introduction

Metal nanoclusters (NCs) hold promise in a variety of applications owing to their versatile
functionalities that can be tailored by size, structure, and composition.

Unlike plasmonic gold nanoparticles (Au NPs), ultrasmall Au NCs (<2 nm in diameter)
show discrete electronic energy levels and multiple peaks in their ultraviolet-visible (UV-vis)
absorption spectra.

Achieving a fundamental understanding of the optical properties and photophysics of metal
NCs (including the electron and phonon dynamics) is of great importance to the
exploration of their applications.

Here, they reported unusual carrier dynamics of Au NCs with hcp and bcc crystalline
phases. Specifically, the carrier dynamics of hcp Au;,(5-Adm);g and bcc Au;gS,(S-Adm),5 NCs
exhibited drastic differences compared with the icosahedral Au,; and fcc Aus;c/Au,,/Aus,
NCs, although all six NCs possess comparable band gaps (1.3 to 1.77 eV).
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Fig. 1. X-ray structures and steady-state UV-vis absorption spectra of Au;,(S-Adm);g and Au;gS,(S-
Adm),, NCs.
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Fig. S1. Absorption spectra of hcp Au;, and bcc Ausg nanoclusters on photon energy scale,
the bandgap is determined to be 1.55 eV and 1.45 eV, respectively.
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Fig. S2. Decay associated spectra (DAS) obtained from global fitting of TA measurements of hcp Au;, with (A)
360 nm and (B) 560 nm excitation.
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Fig. $3. (A) Transient absorption data map with excitation at 560 nm and (B) kinetic traces of hcp Ausy,. Scattermg
due to the pump laser at ~560 nm was cut off.
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Fig. $4. Decay associated spectra (DAS) obtained from global fitting of TA measurement of bcc Ausg with (A)
360 nm and (B) 730 nm excitation.
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Fig. $5. (A) Transient absorption data map with excitation at 730 nm and (B) kinetic traces of

bcc Ausg. Scattering due to the pump laser at ~730 nm was cut off. v
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Fig. 3. Correlation between
structures and excited-state
lifetimes of bcc, hcp, and fcc NCs.
(A to C) Tetrahedral Au, networks
in Aus,, Ausg, and Auz, NGCs. (D)
Excited-state lifetimes versus Eg of
several gold NCs. (E) Excited-state
lifetimes versus distance between
the Au, units in the cores of bcc
Ausg, hcp  Auz,, and  fec
Aus./Au,,/Aus, NCs. (F) Frontier
orbitals and HOMO-LUMO
centroid distances of Aus,, Ausg,
and Au;, from DFT calculations.
Color labels: yellow, § atoms; all
other colors indicate Au. Carbon
tails are omitted for clarity.

13



A B s 9z C 15- i 4
? 4 ) 2
=8 [oee 9
2 @ ‘@ e 2
e £ 10 = £ 10— i 4
> > 1 > i
T £ 1 ks i
o) 0] 1 o) I
(] () Q
£ E : = - |
= = = :
e ‘_‘ q&'
0 1 1 % 0 1 ;
T T T T T
500 600 700 800 500 600 700 800 500 600 700 800
Wavelength (nm) Wavelength (nm) Wavelength (nm)
D E 2 F ¢
hcp Au,, bcc Ausg 3 AU,
()] o (]
@) QO 9 Q 24
£ 1 £ £ 1
~ 00— 16.7 env = = 16.7 cm-
3 - g "
0.5 — 6 - 0 ﬁd
I I I | e I I I == | I I
0 5 10 15 0 5 10 15 0 5 10 15
Time Delay (ps) Time Delay (ps) Time Delay (ps)

Fig. 4. Oscillations observed in NCs. (A to C) TA data map of hcp Aus;,, bec Ausg (pumped at 360
nm), and Au,,, (pumped at 470 nm) NCs between -1 and 16 ps. (D to F) Kinetic traces probed at

selected wavelengths. Strong oscillations were observed in Au;yand Au,,, but not in Ausg.
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Conclusion

L0 They demonstrated a three-orders-of magnitude variation of carrier dynamics with
crystalline phases of hcp Aus, and bec Ausg NCs that relates to the distance between the Au,
tetrahedral units and their connection modes.

U The extraordinarily long lifetime of 4.7 us in bcc Ausg is comparable to that of bulk silicon
and is much longer than that of semiconductor quantum dots, so this NC material may hold
promise in boosting the NC solar-cell performance.

U The correlation of the structure and photodynamics of these metal NCs may stimulate their

future applications in solar energy conversion, photocatalysis, and other optoelectronic
processes.



