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Background

Promising desiccants for sorption-based AWGs
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Relevance

Super-elastic hydrogels
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Introduction

A rationally-designed water harvesting material (moisture absorbing
hygroscopic polymer + water-storing hydrophilic gel)

Unlike active-surface-based vapor adsorption. Hence, exhibits highly efficient
AWH in broad humidity range.



Super-moisture absorbent gel (SMAG)
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Figure 1. AWH based on SMAG. a) Schematic illustration of the AWH process. The water molecules
are captured by SMAG and liquefied under room temperature (enabled by hygroscopic chloride-
doped polypyrrole). The liquid water is absorbed by polymer network matrix of SMAG, realizing the
swelling in moist air. Upon exposure to heat, the contained water is released via the thermal-
responsive hydrophilicity switching (from hydrophilic to hydrophobic in poly-NIPAM). b) Water
production from 24 h AWH at different RH levels. Insets of b): photographs of SMAGs during typical
AWH cycles (50 min for water capturing and 10 min for water releasing), with scale bars of 1 cm.



Characterization

Figure 2. Characterization of the
SMAG. a) Schematic of the
skeleton, porous structure; b) SEM
images of a dried SMAG. The rough
® rry-ci surface of the wall structure
evidences the inlay of PPy-Cl
clusters in the poly-NIPAM matrix.
The morphology comparison of pure
PPy-Cl (inset of b) with scale bar:
500 nm) and the wall structure of
the SMAG further confirms the
interpenetration of PPy-Cl clusters
and poly-NIPAM matrix. ¢) Dynamic
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Figure 3. Water capturing with SMAGs. a) The water capturing the behavior of SMAG at RH of 30%,
60%, and 90%; Insets from bottom to top: corresponding dried and hydrated SMAG with equilibrated
water uptake (scale bar: 1 cm). b) The PCF of water molecule pairs from molecular dynamic simulation;
Inset: computing model of hydrated PPy-Cl shows the water aggregations in the central part of PPy-CI
clusters. c¢) The experimental (black points) and simulated (blue dash) data of moisture absorbing based
on PPy-ClI at various RH. d), The liquid water (violet curve) and moisture (orange curve) absorption of the
poly-NIPAM gel, revealing a superior liquid water absorption and poor moisture capturing of the poly-
NIPAM gel. e) Schematic illustration of the moisture absorption enabled by SMAGS.



Influence of temperature Influence of size
—~gd-+10°C g4 *0.5mm
o | v 25°C RH=90% o | v 1mm = Qe
o[> 3| > 5mm RH=90%
)
< <
o] w
< 44 RH= 60% ® 44 RH = 60%
Q.
3 =
- 1™
- m 2-
‘E ? RH= 30% © ] RH= 30%
2 . - < - 5
0- 0-
0 1000 2000 0 © 1000 2000
Time (min) Time (min)

« Swelling of SMAG is the RDS, instead of vapor permeation.
Identical triggering of vapor liquefaction.
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Figure 4. Water releasing with SMAGs. Water releasing modes of SMAGs with a) high and b)
low water uptake. The water uptake threshold of the express mode is =1.7 g g1, showing that
the SMAGs can rapidly release large amount of water and steadily produce water from the
relatively dry air. ¢) Schematic illustration of express mode and normal mode for the water
releasing powered by solar energy.
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Figure 5. Outdoor AWH powered
by natural sunlight.

a) Schematic illustration of

1) the water harvester based on
SMAGs for 2) the water collector.
Photograph of SMAG bags during
b) water capturing in the natural
environment and c¢) water
releasing under solar radiation.
The obvious volume change of
SMAGs indicates a large water
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Energy transfer during water capture
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Fig. S13.The temperature of the SMAG during the water capturing process.
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