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Figure 1. Designed aldehyde/ketone-responsive colorimetric sensor
array. a) Three aldehyde/ketone-responsive dyes 2 4-dinitrobydrazine
(i), 4,4'-azodianiline (ii) and pararosaniline (iii) with their color change
reactions with carbonyl compounds. b) Preparation of a linearized 21-
element sensor array.
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Tn thés paper. .

»  VOCenission by plants has recently emerged as a non-invasive diagnastic marker of infectious plant diseases due to the rich chemical
information of VOC and their unique functionality in plant self-defence and interplant communications

«  Non-invasive diagnosis of late blight caused by Ahytgohthara infestansby nonitaring characteristic leaf volatile emissionsin the field

*  Asmartphone-integrated plant VOC profiling platfarmusing a paper-based colourinmetric sensor array that incorporates functionalized gald
nanometerials and chenmo-responsive arganic dyes for accurate and early detection of late blight in tommato leaves, for specific recognition of
gaseaus (B)-2-hexenal, one of the main VOC markers enitted during P. infestansinfection

The multiplexed sensor array was scanned in real time by a three-dimensional (3D)-printed smartphone reader and calibrated with known
concentrations of plant volatiles to provide quantitative information on volatile mixtures released by healthy and diseased plants.

«  Using an unsupervised pattern-recognition method, this smartphone based VOC-sensing platformallows far the sub-ppmdetection of (4-2-
hexenal and low-ppmdiscrimination of a range of disease related plant VOCs.

*  Hnally, the perfarmance of the smartphone device was blind-tested using both laboratary-inoculated tomato leaves and field-collected
infected leaves for detection of £ /nfestansand validated against PCR resuilts.
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Fig. 1 | Design of the smartphone imaging platform for plant volatile sensing. a, Schematic representation of the smartphone device
for sensor array scanning, consisting of a smartphone to provide light source and to capture images, a phone attachment with an
external lens and a diffuser and a sensor cartridge containing the chemical sensor array. b, A photograph of the actual sensor
cartridge with a loaded sensor array. c, COMSOL simulation of the gas flow in the array chamber. d,e, Photographs of the back (d)

and front (e) of the smartphone-based VOC-sensing device.
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Fig. 2 | Vapour detection of the characteristic C6 plant aldehyde using functionalized Au NRs. a, Formation of Cys-capped Au NR via ligand
exchange at room temperature (RT). b, Mechanism of the aggregation of Au NRs occurring at the gas—solid interface induced by exposure to (E)-
2-hexenal. ¢, Before- and after-exposure smartphone images of various Cys—Au NR sensors following exposure of different vapour concentrations
of (E)-2-hexenal (0.1-100 ppm) for 1 min; three measurements were repeated with similar results; inset shows a photograph of various Au NR inks
in solution. d, Corresponding RGB differential images of each gas exposure; three replicates were averaged. For display purposes, the RGB
colour range was rescaled from 3—10 to 0—255. e, Response curves of all Cys—Au NR sensors as a function of the vapour concentration of (E)-2-
hexenal. f, LOD calculation of the most responsive sensor, Cys—Au NR with the absorption of 535 nm; the curve was fitted by an exponential
function with R.=0.96. A LOD of ~0.4 ppm was obtained on the basis of the Euclidean distance of a blank control (N .gas) plus three times the
standard deviation (30) of the control (red dotted line). For e and f, data were presented as means + s.d., n = 3 independent experiments. a.u.,

arbitrary unit.
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Figure S7. Optical properties and morphologies of Au nanomaterial sensors before and after vapor exposure. (a) UV-vis spectra
of two Au NRs before and after exposure of 10 ppm gaseous ( E)-2-hexenal for 1 min at the flow rate of 500 sccm; (b)-(e) TEM
micrographs of Cys-Au NR@630 nm (b and c) and Cys-Au NR@530 nm (d and e) before and after the exposure to 10 ppm of

( E)-2-hexenal. For TEM characterization, Cys-Au NRs were drop casted and dried on a TEM sample grid, which was then
exposed to analyte prior to the acquisition of TEM images. For each sample, 3 measurements were repeated with similar results
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Table 1| LODs of six representative plant volatiles detected by
the chemical sensor array on the smartphone, as compared to
the vapour levels detected in P. infestans-infected potato tissues
by GC-MS

Plant VOCs LODs (ppm) Vapour level (ppm)?
(E)-2-Hexenal 04 12-18

(Z7)-3-hexenal 11 6-12

1-hexanal 1.7 3-6

4-ethylphenol 1.8 3-6

Benzaldehyde 0.9 0.3-15
2-phenylethanol 5.2 1.5-3

*Data recalculated from ref. =,
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Fig. 3 | Sensor response of the multiplex array to ten major plant volatiles at the vapour level of 10 ppm for 1 min exposure and their chemometric
analysis. a, Before- and after-exposure images of the ten-element sensor array in response to 10 ppm (E)-2-hexenal; three measurements were
repeated with similar results. b, RGB differential profiles of the sensor array exposed to different concentrations of (E)-2-hexenal (0.5-25 ppm). c,
RGB differential profiles of ten representative plant volatiles at 10 ppm. Each measurement is averaged over three replicates. For display
purposes, the RGB colour range is rescaled from 3—10 to 0—255. d, PCA score plot using the first three principal components; all plant VOCs can
be differentiated except for two weakly responding esters, jasmonate and salicylate; n = 3 independent experiments. e, PCA scree plot that

recombines the RGB vectors of all ten sensor elements.

After recombination, only six dimensions are needed to account for >95% of total variance.
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Figure S15. Evaluation of the sensor response stability of the colorimetric sensor array against various
environmental factors. (a—e) Sensor array response to 10 ppm ( E)-2-hexenal at different humidity (10-90% relative
humidity), gas flow rates (100—-1000 sccm), temperatures (5—-45 ,C), and in the presence of interfering gas analytes,
CO.and H:S. (f—j) Bar graphs showing the corresponding sensor responses of each factor, as represented in
Euclidean distances. Data were presented as means + s.d., n=3 independent experiments.
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2
N e voc ok voc  [E]
0
0 True positive (TP) 20 20 20 19
False positive (FP) - 2 - 0
Fig. 5| Validation of the ¢ : from headspace of three
infected tomato leaves ai True negative (TN) 20 18 20 20 b, Differential RGB profiles of
uninfected tomato leaves False negative (FN) - 0 - 1 y leaves.
Sensitivity (TP/P) - 100% - 95%
Specificity (TN/N) - 90% - 100%

Accuracy ((TP+TN)/n)) - 959% - 97.5%



Usad plasmonic nanostructures analysed on a conventional chemical sensor array integrated a partable smartphone

reader tofadilitate field deployment and inplementation

 The detection specificity of plasnonic gas sensors is achieved by the capturing ligands inmnobilized on the surface of
nanostructures, therefare allowing versatile ligand design to extend the applications to a broad range of gaseous
targets.

The gas sanple processing steps in our approach are relatively sinple. The use of glass vials for callecting leafy
headspace gas fromdetached sanples provides a stable and reproducible testing environment.

*  The device has been beta-tested in the greenhouse setting for monitoring of infection progression for a period of 1
month

 thecost of the chemical sensor array is estimated to be about 15 cents per test and the smartphone attachment is
about US$20 (excluding the phone).
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