Viscometer

Vishal 22-02-2020

Introduction

Viscosity is a measure of response of a fluid under shear stress, τ .

τ = η D (Newton's law of viscosity) η viscosity coefficient. D = dV/dyD is shear rate.

Unit SI unit Pascal.second [Pa•s] CGS poise [P]

Curved line 2 shows a **dilatant fluid** Curved line 3 shows a **pseudo plastic fluid** Straight line 4 and curved line 4' show called a **plastic fluid**

line (4), it is called a **Bingham fluid** Curved line (4), it is called a **Bingham fluid** Curved line (5) shows what is called **thixotropy** Sol state (colloidal sol) (flow) <-> gel (rest)

<u>Figure 3</u> Newtonian Fluid and Non-Newtonian Fluid (Yutaka Matsuyama,

Type of fluid	Typical example
①Newtonian fluid:	Water, sugar solution, salt solution, alcohol, solvent, glycerin, silicon oil, oil-based (water-based)
	cosmetics, mercury
②Dilatant fluid:	Starch solution, moist sand (quick sand), suspension (high concentration), clay slurry, paint,
	chocolate (buttermilk)
③Pseudo plastic fluid:	Colloidal solution, polymer solution, emulsion, lacquer varnish, paint/dye, mayonnaise, sauces, juice,
	evaporated milk
④Plastic fluid (Bingham fluid):	Margarine, tomato ketchup, egg white (foam), toothpaste, cream (cosmetics), various slurries (cloudy
	liquid with solid particle)
(Non-Bingham fluid) :	Print ink, paint, coating, mayonnaise, refined flour of alimentary yam paste, asphalt, blood
(5) Thixotropy:	Solder paste, grease, print ink, clay suspension, tomato ketchup, cocoa, cream (cosmetics)

Table 1 Typical examples of fluid type

Types of Viscometer

1	Vibro viscometer	Measures viscosity by controlling the amplitude of the sensor plates immersed in a sample and measuring the electric current to drive the sensor plates.
2	Rotational viscometer	Measures viscosity by measuring the running torque of the cylindrical rotors immersed in a sample.
3	Capillary viscometer	Obtains viscosity by letting a sample flow inside the capillary and measuring the difference in pressures between both ends of the capillary.
4	Falling-ball viscometer	Obtains viscosity by measuring the time of a cylindrical or spherical object falling through a sample over a specific distance.
5	Cup-type viscometer	Obtains viscosity by measuring the time taken by a sample to flow out of the opening in a container.

Vibro Viscometer

For a fixed frequency and amplitude the driving electric current (driving power) is also directly proportional to the product of viscosity and density of each sample.

Current ∝ viscosity x density

Advantage Can measure over wide range Take continuous measurement

Rotational Viscometer

Measures torque

Based on Torque \propto Viscosity

Limitation Continuity – Requires several type of rotors to wide range of viscosity .

Capillary Viscometer

Falling-ball Viscometer

A sphere or column with known dimension and density is dropped into the medium.

Time taken to travel a specified distance under free fall \propto Viscosity

Limitation Continuous measurement

Figure 9 Principle of Falling-ball Viscometer

Cup Type Viscometer

When measuring the viscosity of paint or ink cup type viscometer are used. Time taken a sample flow from the opening of the cup gives a measure of viscosity.

Limitation

Continuous measurement

