

Diuranium(IV) Carbide Cluster U_2C_2 Stabilized Inside Fullerene Cages

Jiaxin Zhuang,^{†,⊥} Laura Abella,^{§,⊥}[©] Dumitru-Claudiu Sergentu,^{§,⊥}[®] Yang-Rong Yao,[∥] Meihe Jin,[†] Wei Yang,[†] Xingxing Zhang,[†] Xiaomeng Li,[†] Duo Zhang,[‡] Yiming Zhao,[†] Xiaohong Li,[†][©] Shuao Wang,[‡][®] Luis Echegoyen,[∥][®] Jochen Autschbach,^{*,§}[®] and Ning Chen^{*,†}[®]

[†]Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, and [‡]School of Radiological and Interdisciplinary Sciences & Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China ⁸Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States

Published : December 3, 2019

Javoti Rov 22/02/2020

Uranium Stabilization of C₂₈: A Tetravalent Fullerene

Ting Guo, M. D. Diener, Yan Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria,* R. E. Smalley*

Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrum of positive carbon-uranium cluster ions produced by laser vaporization of a graphite-UO₂ composite disk.

NATURE COMMUNICATIONS | (2018) 9:2753

ARTICLE

DOI: 10.1038/s41467-018-05210-8

OPEN

A diuranium carbide cluster stabilized inside a C_{80} fullerene cage

Xingxing Zhang¹, Wanlu Li², Lai Feng³, Xin Chen², Andreas Hansen⁴, Stefan Grimme⁴, Skye Fortier⁵, Dumitru-Claudiu Sergentu⁶, Thomas J. Duignan⁶, Jochen Autschbach ⁶, Shuao Wang⁷, Yaofeng Wang¹, Giorgios Velkos⁸, Alexey A. Popov ⁸, Nabi Aghdassi⁹, Steffen Duhm ⁹, Xiaohong Li¹, Jun Li², Luis Echegoyen⁴, W.H.Eugen Schwarz ^{2,10} & Ning Chen¹

(a) UCU@I_h(7)-C₈₀·[Ni^{II}-OEP] structure showing the relationship between the fullerene cage and the [Ni^{II}-OEP] ligands.
(b) Fragment view showing the interaction of the major U1–C0–U2 cluster with the closest aromatic ring fragments of the cage with centers Ct1 and Ct2.
The orange line connects Ct1–U1–U2–Ct2

- Actinide endohedral metallofullerenes (EMFs) are novel fullerenes that encapsulate actinide atoms and clusters.
- This study demonstrates that it is feasible to observe novel endohedral structures with new actinide clusters and bonding motifs.
- This uranium carbides act as refractory ceramic materials and fuel for nuclear reactors. Such fuel is intended for nuclear-powered rockets due to its better power density, and uranium carbides are desirable candidates for new generations of nuclear reactors at very high temperatures.
- Synthesis of two novel uranium carbide cluster EMFs, U₂C₂@*I_h*(7)-C₈₀ and U₂C₂@D_{3h}(5)-C₇₈, both of which were characterized by mass spectrometry, single-crystal X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), X-ray absorption spectroscopy (XAS), UV-vis-NIR, Raman spectroscopy, as well as density functional theory (DFT) calculations.
- U₂C₂@ *I_h*(7)-C₈₀ and U₂C₂@D_{3h}(5)-C₇₈ are the first examples of structurally characterized uranium(IV) carbides (U₂C₂ motif), forming a butterfly shape in which the two bridged C atoms are linked by a C≡C triple bond. In particular, U₂C₂@ *I_h*(7)-C₈₀ represents the first example of hexavalent M₂C₂ cluster that can be embedded in an *I_h*(7)-C₈₀ fullerene cage.

Result and discussion

Synthesis and isolation

- Graphite rods, packed with U_3O_8 and graphite powder (U/C = 1:30) was vaporized in the arcing chamber under 200 Torr He atmosphere.
- The resulting soot was then collected and extracted with CS_2 for 12 h.
- Multistage HPLC procedures were employed to isolate and purify $U_2C_2@C_{2n}$ (2n = 78, 80).
- The positive-ion mode MALDI-TOF mass spectra of purified U₂C₂@C₈₀ and U₂C₂@C₇₈ show peaks at m/z 1460.04 and 1436.02

Isolation of U₂C₂@C_{2n}

HPLC chromatogram of purified $U_2C_2@C_{80}$ (a) and $U_2C_2@C_{78}$ (b) with toluene as the eluent. The insets show the positive-ion mode MALDI-TOF mass spectra and expansions of the corresponding experimental isotopic distributions of $U_2C_2@C_{80}$ and $U_2C_2@C_{78}$ in comparison with the theoretical ones.

- (a) UV-vis-NIR spectra of $U_2C_2@I_h(7)-C_{80}$ (black) and $U_2C_2@D_{3h}(5)-C_{78}$ (blue) in CS₂. The insets show the photographs of 0.3 mg of $U_2C_2@D_{3h}(5)-C_{78}$ (left) and 0.3 mg of $U_2C_2@I_h(7)-C_{80}$ (right) dissolved in 3 mL of CS₂ solution, respectively.
- (b) ¹³C NMR (600 MHz) spectra of $U_2C_2@I_h(7)-C_{80}$ (CS₂, 298 and 308 K).

XAS spectroscopic studies

U L₃-edge XAS spectra of U₂C₂@ $I_h(7)$ -C₈₀ and U₂C₂@D_{3h}(5)-C₇₈, as compared to those of U@C_{2v}(9)-C₈₂ (U³⁺), uranium-oxalate (U⁴⁺), and uranyl-nitrate (U⁶⁺).

Raman spectroscopic studies

Experimental and computational Raman spectra of (a) $U_2C_2@I_h(7)-C_{80}$ (b) $U_2C_2@D_{3h}(5)-C_{78}$.

Raman spectroscopic studies

Vibrational modes assigned to the major peaks of the Raman spectrum of $U_2C_2@I_h(7)-C_{80}$.

Molecular structures

Figure 2. (a) ORTEP drawing of $U_2C_2@I_h(7)-C_{80}\cdot[Ni^{II}(OEP)]$ (OEP = 2, 3, 7, 8, 12, 13, 17, 18octaethylporphyrin dianion) and $U_2C_2@D_{3h}(5)-C_{78}\cdot[Ni^{II}(OEP)]$ with 20% thermal ellipsoids. (b) View showing the relationship of the major U_2C_2 cluster with the closest cage portions. (c) Configuration of the endohedral U1-C₂-U2 fragment.

Geometric Parameters of U₂C₂ Unit

	U ₂ C ₂ @I _h (7)-C ₈₀	U ₂ C ₂ @D _{3h} (5)-C ₇₈
C–C/Å	1.233	1.127
M–M/Å	3.855	4.164
M–C/Å	2.421/2.386/ 2.366/2.407	2.130/2.23/ 2.354/2.21
dihedral angle/deg	112.7	149.1
ring centroid distance/Å	7.86	8.01

Comparison of the bonding in $U_2C_2@D_{3h}(5)-C_{78}$ and $U_2C_2@I_h(7)-C_{80}$

Comparison between the depth of $D_{3h}(5)-C_{78}$ and $I_h(7)-C_{80}$ cages.

Conclusions

Actinide cluster fullerenes, $U_2C_2@I_h(7)-C_{80}$ and $U_2C_2@D_{3h}(5)-C_{78}$, have been successfully synthesized and characterized.

✤ Crystallographic analyses unambiguously show that a novel uranium carbide cluster, U2C2, was encapsulated inside both Ih(7)-C80 and D3h(5)-C78 cages. The U2C2 cluster in U2C2@C80 adopts a butterfly-shaped geometry with a U−C2−U dihedral angle of 112.7° and a U−U distance of 3.855 Å, the U−U distance in U2C2@C78 is 4.164 Å and the U−C2−U dihedral angle increases to 149.1°.

✤ The combined experimental and quantum-chemical results suggest that the formal U oxidation state is +4 in the U₂C₂ cluster.