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+* Singlet Fission (SF) :

Singlet fission (SF) is a spin-allowed multiexciton generation process in which a
singlet exciton is converted into two triplet excitons in two neighboring molecules.

Singlet Fission: 2 excitons for the price of 1
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» The goal of this work : -

a) To find out a way for making High yield and long lived triplet states through
Singlet-Fission (SF) of tetracene molecule.

b) Proposing a new type of supramolecular strategy utilizing self assemble
monolayers (SAMS) with different chain length.

c) Mixed SAM layer was crated such a way that systematically control the
electronic interaction between two tetracene molecules, which can leads to
highest singlet Fission.



Scheme 1. Schematic Illustration of Organization Process of
Tc¢ Units on MPCs”“
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“Red- and gray-colored units demonstrate Tc and linker chain units,
respectively.
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Figure 1. Structures of Tc-C(11,n)-Ht-MPCs (n = 9, 7, 5) and

reference materials in this study.
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Table S9. Calculation of @r in Tc-C(11,7)-Ht-MPC at different five observation

wavelengths.
Wavelength, nm 1270 1273 1274 1275 1277
@r, % 164 156 163 152 155
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Figure 3. fsTA spectra of (A) Tc-C(11,7)-Ht-MPC and (B) Tc-C(11,11)-MPC in
toluene. The excitation wavelength is 350 nm.
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Figure 5. Nanosecond transient
absorption spectra of Tc-C(11,7)-Ht-
MPC in toluene. Inset shows the
corresponding time profile at 525nm.
Excitation wavelength is 532 nm. The
lifetime of the triplet state is determined
to be 9.3 ps.
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Figure 6. TR-ESR spectra of Tc-C(11,7)-Ht-MPC in
methylcyclohexane at 120 K (Aex =532 nm). Aand E

denote microwave absorption and emission,

respectively. Simulated spectra were obtained by

setting spin sublevel populations to be 0.455, 0.242,

0.303, 0, 0 for the quintet in mS =-2, -1, 0, +1, and
+2, respectively.



Tc-C(11,7)-Hm-MPC in CDCls. Tc-C(11,7)-Ht-MPC in CDCls .
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Relatively sharpened proton peaks of Tc were observed at high temperature (323 K)
as compared to those at 298 K.These results suggested the stacked interaction of two
Tc unit was reduced in Tc-C(11,7)- Ht-MPC as compared to Tc-C(11,7)-Hm-MPC.
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Figure 7. Proposed dimeric structures of Tc units in Tc-C(11,n)-Ht-MPCs. (A) Close-stacking models
forn=11(AD11=3.0A),n=9(AD9=4.2A),n=7 (AD7 =5.8 A), and n =5 (AD5 = 8.5 A) and (B)
equally spaced models forn=11 (AD11'=12.5A),n=9(AD9'=12.3A), n=7 (AD7'=12.7 A), and
n=5(AD5’=13.4A).



Conclusion:

¢ We have newly synthesized a series of mixed Tc- SAMs on gold nanoclusters prepared from
a Tc-modified heterodisulfide with two different chain lengths (Tc-C11-S-SCn-Tc (n =9, 7, 5))
[Tc-C(11,n)-Ht-MPC]. The detailed structures of these Tc-modified MPCs were successfully
assigned by steady-state spectroscopy, MALDI-TOF mass, TEM and XRD.

s Temperature-dependent 1H NMR measurements suggested smaller interaction of two Tc
units in Tc-C(11,7)-Ht-MPC as compared to mixed SAMs by two different Tc-homo-disulfides:
(Tc-C11-S)2 and (Tc-C7-S)2 [Tc-C(11,7)-Hm-MPC].

¢ Such control of electronic interaction between two neighboring Tc units in C(11,7)-Ht-MPC
resulted in the highest OSF = 90% among Tc derivatives in homogeneous solution (together
with OT = 160%).
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