

Subscriber access provided by INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT MADRAS)

Article

Tetrahedral Geometry Induction of Stable Ag-Ti Nanoclusters by Flexible Trifurcate TiL3 Metalloligand

Mei-Yan Gao,^[a, b] Kai Wang,^[a] Yayong Sun,^[a] Dejing Li,^[a] Bai-Qiao Song,^[b] Yassin H. Andaloussi,^[b] Michael J. Zaworotko,^[b] Jian Zhang^[a] and Lei Zhang^{*[a]}

[a] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China 350002.

[b] Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Republic of Ireland.

Publication Date: June 24, 2020

Paper presentation Jayoti Roy 11-07-2020

Background of the paper

Pd-Mediated Synthesis of Ag₃₃ Chiral Nanocluster with Core–Shell Structure in T Point Group

Fan Tian[®] and Rong Chen^{*®}

School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China

Self-Assembled M₂₄L₄₈ Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation

Qing-Fu Sun,¹ Junji Iwasa,¹ Daichi Ogawa,¹ Yoshitaka Ishido,¹ Sota Sato,¹ Tomoji Ozeki,² Yoshihisa Sei,³ Kentaro Yamaguchi,³ Makoto Fujita¹*

Qing-Fu Sun et al., Science 328, 1144 (2010)

Motivation

Communications

Angewandte International Edition Chemie

- Structure of multi-metallic poly-oxo titanium clusters.
- > The use of structure-directing additives such as highly directional nature of metalloligands.
- Mass spectrometry based studies in PTCs.

Introduction

The use of self-assembly of building blocks with directional features i.e. Metalloligand has resulted in assemblies that exhibit polyhedral geometry, including Archimedean and Platonic solids.

The use of structure-directing additives such as the highly directional nature of metalloligands can play a significant role in the design of high-performance nanoclusters.

> Titanium-based metalloligands with trifurcate TiL_3 moieties (L= salicylate or 5-fluoro salicylate), could be envisaged to be well-suited for the controlled formation and stabilization of metallic nanoclusters owing to their conformational flexibility.

➢ In this work, a family of five novel heterometallic Ag-Ti clusters with tetrahedral geometry were assembled via the flexible trifurcate TiL₃ metalloligand : Ti₄Ag₈(SA)₁₂•MeOH (PTC-85), Ti₄Ag₁₂(SⁱPr)₆(SA)₁₀(HSA)₂•H₂O (PTC-86), Ti₄Ag₂₂(SⁱPr)₁₂(SA)₁₂SO₄ (PTC-87), Ti₄Ag₄₂(S)₄(SⁱPr)₁₈(SA)₁₂(SO₄)₄•8MeOH (PTC-88) and Ti₄Ag₃₆(SⁱPr)₂₄(SA-F)₁₂(SO₄)₂ (PTC-89).

> These nanoclusters demonstrate ultra-stability in air for several months and in water over 3 days due to the encapsulation effects of the trifurcate TiL₃ metalloligands. ⁶

Synthesis of nanoclusters

Ag-precursors : AgOAc, [Ag(ⁱPrS)]_n Ligands : Salicylic acid, 5-fluorosalicylic acid

Scheme 1. Illustration of tetrahedral geometry induction of Ag nanoclusters by the trifurcate TiL_3 metalloligands.

Figure 1. Molecular structures (top) and illustrations of the cluster assembly (bottom) of **PTC-85**, **PTC-86**, **PTC-87**, **PTC-88** and **PTC-89**. SⁱPr⁻ and H atoms have been omitted for clarity. Green Ti; violet Ag; red O; yellow S; gray C.

Figure 2. The structural parameters of TiL3 metalloligands and corresponding {Ag3} vertex units in **PTC-85** (a), **PTC-86** (b), **PTC-87** (c), **PTC-88** (d) and **PTC-89** (e), indicating the flexibility of the TiL₃ metalloligand.

Figure 3. (a) Structure of **PTC-88** with the innermost {Ag₆} platonic solid shown in polyhedron mode (the SiPr– groups are omitted); (b) Space-filling representation of **PTC-88**; (c) Coordination environment of the {Ag6} core in **PTC-88**; (d) Chemical bonds between the {Ag₁₂} truncated tetrahedron and the distorted {Ag₂₄} truncated octahedron in **PTC-88**, highlighting the four SO₄²⁻ ligands. S and O atoms are represented with the space-filling model. Green Ti; violet Ag; red O; yellow S; gray C.

Figure 4. (a) **PTC-89** consists of an outermost tetrahedra formed from 4 Ti atoms, $\{Ag_{24}\}\$ and $\{Ag_{12}\}\$ Archimedean solids (the iPrS–groups are omitted); (b) The structure of $\{Ag_{36}\}\$ polyhedron in **PTC-89**; Stability tests of **PTC-89** in (c) air and (d) water.

Figure S15. PXRD patterns for PTC-85 in (a) air and (b) water. Inset: compound PTC-85 in the air for several months.

Figure S16. PXRD patterns for **PTC-86** in (a) air and (b) water.

Figure S17. PXRD patterns for **PTC-87** in (a) air and (b) water. Inset: compound **PTC-87** in the air for several months.

Z-scan measurements

Figure 5. The open aperture Z-scan (points) and theoretical fit (solid lines) curves of **PTC-85**, **PTC-87** and **PTC-89** at 532 nm with a laser power of 120 μ J (inset: solution of **PTC-89** in DMF).

Schematic representation of Z-scan technique

Xin Zheng et al., Vol. 23, No. 12 | DOI:10.1364/OE.23.015616 | OPTICS EXPRESS 15616

Luminescence spectra

Figure S18-20. Luminescence spectra of (a) **PTC-85 (b) PTC-86 (C) PTC- 89** as a function of temperature from 77 to 298 K in the solid state for excitation at 340 nm 365 nm and 350 nm respectively.

Conclusion

- The flexible trifurcate TiL₃ metalloligand reported herein can serve as a structuredirecting and functionalizing ligand to form a family of interesting tetrahedral nanoclusters with complicated combinations of Archimedian and Platonic solids.
- The structures were determined by single-crystal X-ray diffraction analysis to give core compositions of Ag₄@Ag₄@Ti₄, Ag₁₂@Ti₄, Ag₄@Ag₆@Ag₁₂@Ti₄, Ag₆@Ag₁₂@Ti₄, Ag₆@Ag₂₄@Ag₁₂@Ti₄, Ag₆@Ag₂₄@Ag₁₂@Ti₄, and Ag₁₂@Ag₂₄@Ti₄, which all presented tetrahedral geometry.
- The protective effect of the TiL₃ metalloligand makes the obtained silver nanoclusters highly stable in air and water.
- Optical limiting properties and photoluminescent behaviours of these complexes were studied, which displayed noteworthy performance.