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Terminology

O Vertical detachment energy (VDE): It is the most probable and intense transition
corresponding to the vibrational excited state of the positive ion that has the same
geometry as the neutral molecule.

O Adiabatic electron affinity(AEA): It is given by the difference between the energy of
the neutral system at its most stable geometry, and of the anionic cluster, also at its
most stable conformation.

O Repulsive Coulomb barrier (RCB): It is the energy barrier experienced by an electron
which is emitted from a multiple charged anion. the electron experiences short-
range attraction by the nuclei and long-range repulsion from the remaining
negatively charged system, giving rise to the RCB.

O Thermionic emission (TE): A slow emission of electrons from a heated source,
suppressing direct electron detachment and dissociation into anionic fragments.
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Electrochemical analysis demonstrated that the energy levels of the HOMO are upshifted in
the order of Aui:< PtAuw=< IrAu», which is explained as, the jellium core potential at the
central position becomes shallower by replacing Au*with Pt°and further with Ir. A gradual
increase of the energy gap between HOMO and LUMO in the order of Au,; < PtAu,, <IrAu,,

was observed here.



+» Doping with heteroatoms is a promising approach to enhance the stability
and further improve the properties of the Ag clusters.

+* These atomically defined bimetallic clusters provide an ideal platform to
study the effect of single-atom doping on their properties.

s Although doping effects on the electronic structures have been studied
using conventional spectroscopic and electro-chemical methods, the
fundamental question of how the energy levels of the superatomic
orbitals are shifted upon doping has not been addressed.



Why this paper..

J Relevance to atomically precise alloy clusters and their
chemistry.

O PES studies is a new area of research in these alloy nano
systems, which can address some fundamental issues.

1 Anion PES not only elucidate the intrinsic electronic structures
of superatomic systems, but also provide insight into their
photostability and photochemistry.



Photoelectron Spectroscopy (PES)

* Photoelectron spectroscopy (PES), also known as photoemission spectroscopy, refers
to energy measurement of electrons emitted from solids, gases or liquids by the
photoelectric effect, in order to determine the binding energies of electrons in the

substance.
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* Photoelectron spectroscopy in an isolated environment is a direct probe of the
energy levels with respect to the vacuum level and density of states of the

occupied superatomic orbitals.



Introduction

dGas-phase PES was conducted on [XAg,,(SPhMe,) ] (X=Ag, Au) and
[YAg,,(SPhMe,)18] (Y=Pd, Pt), which have a formal superatomic core
(X@Agy,)>* or (Y@Ag,,)* with icosahedral symmetry.

Winvestigation on the effect of single-atom doping on the energy levels of
superatomic orbitals of [XAg,,(SPhMe,),c]" (X=Ag, Au) and
[YAg,,(SPhMe,)s]?> (Y=Pd, Pt) as model systems is done.

UThe gas-phase PES will provide not only fundamental information on
the electronic structures of chemically modified superatoms, but also
give novel insight into photoinduced electron-transport phenomena and
charging energy in solution.



Experimental Setup
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Figure S8. Schematic illustration of home-built apparatus for photoelectron spectroscopy.
Orange and blue arrows indicate the trajectories of the ions and electrons, respectively.
The solid purple arrow denotes the laser irradiation of the Nd:YAG laser.
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Figure 1. a) UV/Vis absorption spectra and b) ESI-TOF mass spectra of [Ag25(SR)18]-
(black), [AuAg24(SR)18]- (red), [PdAg24(SR)18]2- (blue), and [PtAg24(SR)18]2-
(green). Small peaks X, Y, and Z in panel (b) are assigned to the fragments
[AuAg21(SPhMe2)15]-, [AuAg20(SPhMe2)14]-, and [Ag5(SPhMe2)6]-, respectively.
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Figure 2. PE spectra of a) [Ag25(SR)18]-, b)
[AuAg24(SR)18]-, c) [PdAg24- (SR)18]2-, and
d) [PtAg24(SR)18]2- recorded at 355 nm.
Insets in panels (c) and (d) are PE spectra
recorded at 532 nm.
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Figure 3. PE spectra of a) [Ag25(SR)18]-,
b) [AuAg24(SR)18]-, c) [PdAg24-(SR)18]2-,
and d) [PtAg24(SR)18]2- recorded at 266

nm.



Table 1: AEA and VDE values of the clusters, determined experimentally
and calculated theoretically.

Cluster

Ag2s(SR) 1]’
AUAg, (SR):s]’
PdAZ::(SR) 1]
PtAg:4(SR)1s]

AEA (eV)

Exp.

(R=PhMe,)

2.02+0.02
2.08 £0.02
0.61+0.04
0.60£0.06

Calc.
(R=Me)

3.46
3.51
1.17
1.22

Cluster

Ag:s(SR)1s]

-.A.U.A.gzq_{s E} ]3]
PdAg.,(SR),s]

PtAg,4(SR) 5’

a] Calculated values obtained with the B3LYP functional are shown in

parentheses. The calculation of [AuAg,,(SR),s] was not performed.
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Figure 4. Orbital energies for a) [Ag25(SMe)18]-, b) [AuAg24(SMe)18]-, c) [PdAg24(SMe)18]2-,
and d) [PtAg24(SMe)18]2-, calculated using the PBE functional. Black and red bars denote the
energies of occupied and unoccupied orbitals, respectively. Orbital energies are given with
reference to the calculated VDE. Table S1. HOMO-LUMO gap theoretically calculated

HOMO-LUMO gap (eV)

Cluster

PBE B3LYP
[Agzs(SMe)1s] 1.25 2.26

[AuAgz24(SMe)re]” 1.44 N.A.

[PdAgzs(SMe)e]> 1.26 2.31

[PtAg2+(SMe )] 1.42 2.50
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Figure 5. Schematic illustration of the potentials of a) (X@Ag;,)>*(L ),
(X=Ag, Au) and b) (Y@Ag,,)* (L) (Y=Pd, Pt), where L denotes the
Ag,(SR); staple unit. d is the distance between electron and the cluster.



Conclusion

¢ Using gas-phase PES, they have successfully observed how the electronic
structure of [Ag,-(SPhMe,) ;] was changed by replacing the central Ag+ with
an Au+, Pt, or Pd atom.

% PES results show that superatomic orbitals in the (Au@Ag,,)°* core remain
unshifted with respect to those in the (Ag@Ag,,)>* core, whereas the
orbitals in the (Y@Ag,,)*" (Y = Pd, Pt) core shift up in energy by about 1.4 eV.

** The relative energies between the energy levels were retained upon doping.

s The remarkable doping effect of a single Y atom on the electronic structure
of the chemically modified (Ag@Ag,,)>* superatom was reproduced by
theoretical calculations on simplified model systems and was ascribed to

1) the weaker binding of valence electrons in Y@(Ag*),, compared to

Ag*@(Ag*),, due to the reduction in formal charge of the core potential, and

2) the upward shift of the apparent vacuum level due to the presence
of a repulsive Coulomb barrier between [YAg,,(SPhMe,) ¢]" and electron.






