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Relevance

» Electrospray — a synthetic tool
» Transformation of materials in microdroplets

» Multimetallic nanoclusters — Choice of metal systems

Why this paper

» Novel synthetic method and mechanism
» Existing method can be tuned to achieve novelty

» Importance of the supported nanoparticles for the potential applications



In this paper

» A general and facile fast moving bed pyrolysis (FMBP) strategy following wet
impregnation for the preparation of ultrasmall and highly dispersed HEA-NPs coming up
to 10 immiscible elements (Mn, Co, Ni, Cu, Rh, Pd, Sn, Ir, Pt, and Au).

» The pyrolysis of the mixed metal chlorides precursors loading on various granular
supports such as carbon support (carbon black and graphene oxide), y-Al203, and
zeolite.

» In the FMBP process, the formation of HEA-NPs is thermodynamically favored due to
the low free energy of the formation of nuclei, which results from the fast pyrolysis of
precursors at high temperatures.

» The representative quinary (FeCoPdIrPt) HEA-NPs possess the high activity and
exceptional stability toward hydrogen evolution in  water splitting.



Synthesis
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Fig: a) Schematic diagram of the FMBP experimental setup for synthesis of HEA-NPs. b) Schematic diagrams for
synthesis of homogeneous and phase-separated HEA-NPs by FMBP and FBP strategies, respectively.



Characterization
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c)The simulation of the time required for precursors/GO (20 mg, 3 wt%) to reach 923 K in the FMBP process. Center: the metal precursors/GO
in the quartz boat. d)HAADF-STEM images for the denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs highly dispersed on GO synthesized by the FMBP
strategy (The loading of HEA-NPs on GO was 3 wt%). e)The HR-STEM image for the denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs (inset, the
Fourier transform analysis for denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs indicated that the denary HEA-NPs featured with an fcc crystal
framework). f) Elemental maps for denary (MnCoNiCuRhPdSnIrPtAu) HEA-NPs (The loading of HEA-NPs on GO was 10 wt%). The elements in
HEA-NPs have the equal atomic ratio. Scale bar d: 10 nm, e: 0.5 nm, and f: 10 nm.



Application of FMBP to various systems
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Characterization
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Fig: HRTEM images and EDX spectra of
(MnCoNiCuRhPdSnIrPtAu) alloy. HRTEM images (a, b)
and EDX spectra (¢) for the denary

(MnCoNiCuSnRhPdIrPtAu) HEA-NPs supported on GO
at 923 K. The loading of HEA NPs on GO was 3 wt%.
Scale bar a: 20 nm, b: 10 nm.
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Fig: XRD patterns of alloys containing 5-10 metals by

FMBP. quinary (CuSnPdPtAu) HEA-NPs (a), senary
(NiCuSnPdPtAu) HEA-NPs (b), octonary
(NiCoCuSnIrPdPtAu) HEA-NPs  (c), and denary

(MnCoCulrNiSnRhPdPtAu) HEA-NPs (d) by FMBP at 923 K.
The loading of HEA-NPs on GO was 10 wt%.



Immobilizing HEA-NPs on various supports
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Fig. 3 Supporting HEA-NPs on various
supports. The schematic diagrams for
HEA-NPs dispersed on y-Al203 (a),

zeolite (b), and carbon black (c). d The

n elemental maps for quinary
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S v - - = - . - zeolite, (The loading of HEA-NPs on y-
: .-'..... Al203 and zeolite was 10 wt%). e)
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_e CuPdSnPtAU@AL,O;  CuPdSnPtAu@zeolite CuPdSnPtAu@carbon black CuPdSnPtAUGGO NPs synthesized by FMBP strategy were

highly dispersed on y-Al203, zeolite,
carbon black, and GO. f) HR-TEM
images for HEA-NPs supported on y-
Al203, zeolite, carbon black, and GO
synthesized by FMBP strategy (The
loading of HEA-NPs on supports was 3
wt%). The elements in HEA-NPs have
the equal atomic ratio. Scale bar d: 10
nm, e: 20 nm, f: 5 nm.




Effect of temperature on alloy formation
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Fig. 4 Synthesis of NiPdPt by different methods. a) The STEM image of NiPdPt obtained by FMBP (923 K). b) The elemental
maps of NiPdPt obtained by FMBP (923 K). c)The STEM image of NiPdPt obtained by SMBP (923 K). d) The elemental maps
of NiPdPt obtained by SMBP. e) The STEM image of NiPdPt obtained by FBP. f) The elemental maps of NiPdPt obtained by
FBP. The loading of HEA-NPs on GO was 3 wt% for a, ¢, e. The loading of HEA-NPs on GO was 10 wt% for the NiPdPt alloy
for elemental maps. Scale bar a: 10 nm, (b—d, f): 50 nm, e: 200 nm.



Control experiments

Fig: STEM images for CuSnPdPtAu by
FMBP for different time. (a) 30 min,
(b) 120 min, (c) 180 min. The loading
of HEA-NPs on GO was 3 wt%. Scale
bar (a-b): 10 nm, c: 20 nm.

Fig: STEM images for NiPdPt by FMBP at different temperature. The ternary
(NiPdPt) alloy supported on GO synthesized by the FMBP (120 min) method at
673 K (a), 923 K (b), and 1173 K (c), respectively. The loading of HEA-NPs on
GO was 3 wt%. Scale bar (a-b): 10 nm, c: 20 nm.

Fig: Elemental maps of NiPdPt by FMBP at different
temperature. The ternary (NiPdPt) alloy supported on GO
synthesized by the FMBP method at 673 K (a), 923 K (b),
and 1173 K (c), respectively. The loading of HEA-NPs on
GO was 10 wt%. Scale bar (a-b): 50 nm, c: 70 nm.



Mechanism of formation of HEA-NPs
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Fig. 5 Mechanism of formation of nanocrystals by FMBP and FBP. a The diagrams of formation of
monomers (l), nucleation (Il), and growth of nanocrystal (lll) versus the reaction time by FMBP. b The
diagrams of formation of monomers (l), nucleation (ll), and growth of nanocrystal (lll) phases versus the
reaction time by FBP. c)The corresponding overall free energy change ((AGr) versus the nucleus size (r) via
FMBP, and FBP strategies. d The effect of nucleation temperature on the nucleation rate (dNr/dt).



HER tests
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Fig: Electrochemical HER performance of samples. a) The activities toward HER of the prepared FeCoPdPtlr@GO and Pt/C, and
pure CP eOur FMBP strategy allowslectrodes. Linear sweep voltammetry (LSV) curves were conducted to evaluate the activity
toward HER at a scan rate of 5 mV s with iR correction. The mass loading of HEA-NPs on GO was 3 wt%. b)Chronopotentiometry
curve for FeCoPdIrPt@GO. c The amount of H, during HER.



Summary

» A facile synthesis strategy, i.e. fast moving bed pyrolysis, for synthesizing the ultrasmall
homogeneous HEA-NPs with up to ten elements (MnCoNiCuRhPdSnIrPtAu) highly dispersed
on various granular supports.

» This strategy ensures the mixed metal precursors to be simultaneously pyrolyzed at high
temperatures, which results in the high supersaturation of monomers and the small size of
nuclei, producing the highly dispersed HEA-NPs on supports.

» The parameters and mechanism of fast moving bed pyrolysis for producing HEA-NPs are
investigated.

» The representative FeCoPdIrPt HEA-NPs exhibit the smaller overpotential and the higher

mass activity of HER in electrochemical water splitting as compared with the commercial
Pt/C.



