

Communications

Cluster Compounds

How to cite: Angew. Chem. Int. Ed. 2021, 60, 645–649 International Edition: doi.org/10.1002/anie.202010342 German Edition: doi.org/10.1002/ange.202010342

Controlled Dimerization and Bonding Scheme of Icosahedral $M@Au_{12}$ (M = Pd, Pt) Superatoms

Emi Ito, Shinjiro Takano,* Toshikazu Nakamura, and Tatsuya Tsukuda*

Received: 28 July 2020 Publication Date: 01 October 2020

Background

Efficient and Selective Conversion of Phosphine-Protected $(MAu_8)^{2+}$ (M = Pd, Pt) Superatoms to Thiolate-Protected $(MAu_{12})^{6+}$ or Alkynyl-Protected $(MAu_{12})^{4+}$ Superatoms via Hydride Doping

Shinjiro Takano,*^{,†} Shun Ito,[†] and Tatsuya Tsukuda*^{,†,‡}

Motivation

- To determine the structure and the spin state of Pd₂Au₃₆(SR)₂₄ by more straightforward methods such as SCXRD and static magnetization experiment, respectively.
- To develop an efficient targeted synthesis of superatomic molecules using "preformed" superatoms as starting materials.

Why this paper?

- This paper revealed for the first time, the SCXRD structure of the homo and hetero dimers of M@Au12 superatoms as the cores.
- Hetero-doped MM'Au₃₆(PET)₂₄ was synthesized for the first time by using the fusion process of preformed alloy superatoms.

Structure of Au₃₈(SR)₂₄

Introduction

- Targeted syntheses of MM'Au₃₆(PET)₂₄ (M, M'= Pd, Pt; PET=SC₂H₄Ph) were achieved by hydride-mediated fusion reactions between [MAu₈(PPh₃)₈]²⁺ and [M'Au₂₄(PET)₁₈].
- Single-crystal X-ray diffraction analysis indicated that the products have biicosahedral MM'Au₂₁ cores composed of M@Au₁₂ and M'@Au₁₂ superatoms.
- Although the MM'Au₂₁ superatomic molecules correspond to O₂ in terms of the number of valence electrons (12 e), the distances between the icosahedrons were larger than that in the bi-icosahedral Au₂₃ core of Au₃₈(PET)₂₄ corresponding to F₂ and the spin state was singlet.
- These counterintuitive results were explained by a "bent bonding model" based on tilted (non-orthogonal) bonding interaction between the 1P superatomic orbitals of M@Au₁₂ and M'@Au₁₂ superatoms.

Synthetic procedure

- Firstly, hydrogen-containing clusters [HPdAu₈(PPh₃)₈]⁺ (5) and [HPtAu₈(PPh₃)₈]⁺ (6) were prepared in situ by the reaction of [PdAu₈(PPh₃)₈]²⁺ and [PtAu₈(PPh₃)₈]²⁺ with NaBH₄, respectively.
- Then, PdAu₂₄(PET)₁₈ and PtAu₂₄(PET)₁₈ were reduced to mono-anions
 [PdAu₂₄(PET)₁₈]⁻ (7) and [PtAu₂₄(PET)₁₈]⁻ (8), respectively, by mixing with NaBH₄.
- Finally, 1, 2, and 3 were produced by mixing equivalent amounts of 5 (or 6) and 7 (or 8), followed by addition of Au^I-PET oligomer formed in situ by mixing Au^ICISMe₂ and PET-H.

 $5 + 7 + Au^{1}-PET = Pd_{2}Au_{36}(PET)_{24}$ (1) $5 + 8 + Au^{1}-PET = PdPtAu_{36}(PET)_{24}$ (2) $6 + 8 + Au^{1}-PET = Pt_{2}Au_{36}(PET)_{24}$ (3)

Characterization

Figure S2. Negative-ion mode MALDI mass spectra of **1** (bottom), **2** (middle), and **3** (top). Inset shows high mass number region. Asterisk indicates the peak corresponding to laser-induced fragmented ion of (Au-PET)₄ loss.

RESULTS AND DISCUSSION

Figure 1. Crystal structures of a) 1, b) 2, c) 3, and d) 4. Metal and sulfur atoms are shown as spheres. Color code: yellow Au; teal Pd; pink Pt, red S, gray C. Organic residues are depicted as gray sticks and H atoms and disordered parts are omitted for clarity. In 2, the central position is treated as half occupancy of Pd/Pt atoms. CCDC numbers are given in the Supporting Information.

Figure 2. Optical absorption spectra of 1 (green), 2 (cyan), 3 (blue), and 4 (red) in CHCl₃. Inset shows the spectra as a function of photon energy obtained by Jacobian transformation. Spectra are offset vertically to avoid the overlapping.

Cluster	$D_{i-i}^{[b]}$	$D_{e-e}^{[c]}$	$D_{rb}^{[d]}$	$D_{sb}^{[e]}$	CSM ^[f]
] ^[g]	4.133	8.443	2.676-2.840	2.725-3.237	0.298
2 ^[h]	4.136	8.479	2.701-2.824	2.746-3.192	0.238
3 ^[h]	4.151	8.491	2.718-2.828	2.764-3.168	0.228
4 ^[h]	4.087	8.427	2.751-2.835	2.756-3.025	0.305

Table 1: Selected structural information of MM'Au₂₁ and Au₂₃ cores of 1–4.[a]

[a] From SCXRD analysis. [b] M-M' distance in . [c] Average distance of both ends in . [d] Radial bond distribution of each icosahedron in . [e] Surface bond (<3.3) distribution of each icosahedron in . [f] Average CSM value of each icosahedron. [g] 103 K. [h] 123 K.

Figure 3. Cross section of the waist of a) Pd₂Au₂₁of 1, b) PdPtAu₂₁of 2, c) Pt₂Au₂₁of 3, and d) Au₂₃of 4.

Figure 4. Energy diagrams and schematic Kohn–Sham orbitals of Au₂₃ in 4 (left) and Pd₂Au₂₁ in 1 (right). Occupied and unoccupied orbitals are represented by solid and dotted lines, respectively.

Conclusion

- Superatomic molecules MM'Au₂₁ (M, M'= Pd, Pt) with bi-icosahedral motifs were synthesized by novel fusion reactions between hydrogencontaining HMAu₈(8e) superatoms and M'Au₁₂(7e) superatoms.
- SCXRD data suggested that the bonds between the icosahedral units in MM'Au₂₁ are weaker than that in Au₂₃ although the formal bond order of the former is larger than that of the latter.
- Magnetic property measurement revealed that MM'Au₂₁ takes a singlet spin state although it can be viewed as O₂ analogue.
- Based on DFT calculation, MM'Au₂₁(12e) is constructed through "bent" s and p bonds between the two Pd@Au₁₂(6e) superatoms.

