Statistical thermodynamics Lectures 7, 8 Quantum classical Energy levels Bulk properties Various forms of energies. Everything turns out to be controlled by temperature Ref. Atkins 7th or 8th edition Alberty, Silbey, Bawendi 4th edition Need for statistical thermodynamics Microscopic and macroscopic world Energy states Distribution of energy population Principle of equal a priori probabilities 0 ——— Reference to zero Configuration - instantaneous $n_1, n_2,...$ molecules exist in states with energies $\varepsilon_0, \varepsilon_1,...$ N is the total number of molecules $\{N,0,0,\ldots\}$ and $\{N-2,2,0,\ldots\}$ are configurations Second is more likely than the first Fluctuations occur {1,1}, {2,0}, {0,2} Weight of a configuration = how many times the configuration can be reached. #### Energy ## Generalized picture of weight *A configuration* {*N-2,2,0,0,...*} First ball of the higher state can be chosen in N ways, because there are N balls Second ball can be chosen in N-1 ways as there are N-1 balls But we need to avoid A,B from B,A. Thus total number of distinguishable configurations is, ½ [N(N-1)] A configuration $\{3,2,0,0,...\}$ is chosen in 10 different ways - weight of a configuration How about a general case of N particles ? $\{n_0,n_1,.....\}$ configuration of N particles. Distinct ways, $$W = N! \over n_0! n_1! n_2! \dots$$ N! ways of selecting balls (first ball N, second (N-1), etc.) $n_0!$ ways of choosing balls in the first level. $n_1!$ for the second, etc. W is the weight of the configuration. How many ways a configuration can be achieved. #### Better to use natural logarithm $$\begin{split} & \ln W = \ln \ \, \frac{N!}{n_0! \ n_1! \ n_2! ...} \\ & = \ln \, N! \cdot \ln(n_0! \ n_1! \ n_2! ...) \\ & = \ln \, N! \cdot (\ln \, n_0! \ + \ln \, n_1! \ + \ln \, n_2! ...) \\ & = \ln \, N! \cdot - \sum_i \ln \, n_i! \\ & \ln \, x! \approx x \ln \, x \cdot x \, \text{Stirling's approximation} \\ & \ln \, W = (N \, \ln \, N \, - \, N) \, - \, \sum_i \, (n_i \, \ln \, n_i - \, n_i) = N \, \ln \, N \, - \sum_i n_i \, \ln \, n_i \end{split}$$ # Which is the dominating configuration having maximum weight? Generalized approach is to set dW = 0 There are problems as any configuration is not valid. - 1. Energy is constant. $\Sigma_i n_i \epsilon_i = E$ - 2. Constant molecules. $\Sigma_i n_i = N$ Populations in the configuration of greatest weight depends on the energy of the state. $$\frac{n_{i}}{N} = \frac{e^{-\beta \epsilon_{i}}}{\sum_{i} e^{-\beta \epsilon_{i}}}$$ Boltzmann distribution i is a sum over available states $$\beta = \frac{1}{kT}$$ Temperature gives the most probable populations $$p_i = e^{-\beta \epsilon_i}$$ Molecular partition function $$q = \sum_{i} e^{-\beta \epsilon_{i}}$$ There are several ways of looking at i Another form of q: $$q = \sum_{levels i} g_i e^{-\beta \epsilon_i}$$ $$q = \sum_{levels i} g_i e^{-\beta \epsilon_i}$$ How to look at partition functions? Look at limiting cases $$\lim_{T\to 0} q = g_0$$ Because, $\varepsilon_0 = 0$ For all higher levels ε is finite. $$e^{-\beta \epsilon} = 1$$. e^{-x} is 0 when x is ∞ . $$\lim_{T\to\infty} = \infty$$ $\lim_{T\to\infty} = \infty$ All terms will reduce to 1. When number of states is finite. we will not get ∞ . e^{-x} is 1 when x is 0 - 1. Partition function is the number of available states. - 2. Partition function is the number of thermally accessible states. - 3. How molecules are 'partitioned' into available states. How to look at thermodynamic properties? ## **Evaluation of molecular partition function** 2ε _____ $$1 + x + x^2 + x^3 + \dots = 1/(1-x)$$ $$q = 1 + e^{-\beta \epsilon} + e^{-2\beta \epsilon} + e^{-3\beta \epsilon} + ... = 1 + e^{-\beta \epsilon} + (e^{-\beta \epsilon})^2 + (e^{-\beta \epsilon})^2 + ... = 1/(1 - e^{-\beta \epsilon})^2$$ Fraction of molecules in energy levels is, $$p_i = e^{-\beta \epsilon} / q = (1 - e^{-\beta \epsilon}) e^{-\beta \epsilon}$$ Discussion of figure, next slide For a two level system, $$p_{o} = 1/(1 + e^{-\beta \epsilon})$$ $$p_{1} = e^{-\beta \epsilon}/q = e^{-\beta \epsilon}/(1 + e^{-\beta \epsilon})$$ As T $\rightarrow \infty$, both p_o and p₁ go to ½. **Consequences?** | Low temperature |
 | High temperature | |-----------------|-------|------------------| | |
 | | | | | |
 | | | |
 | | | |
_ | ### Approximations: Partition functions are often complex. Analytical expressions cannot be obtained in several cases. Approximations become very useful. #### For example, partition function for one dimensional motion $$E_n = \frac{n^2h^2}{8 \text{ mX}^2}$$ $n = 1, 2....$ $$\varepsilon_{n} = (n^{2}-1)\varepsilon$$ $\varepsilon = \frac{h^{2}}{8mX^{2}}$ $$q_x = \sum_{n=1}^{\infty} e^{-(n^2-1)\beta\epsilon}$$ $q_x = \int_{-\infty}^{\infty} e^{-(n^2-1)\beta\epsilon} dn$ energy levels are close, sum becomes an integral No big difference, if we take the lower limit to 0 and replace $$n^2$$ -1 to n^2 . $$q_x = \frac{1}{\beta \epsilon} \int_0^{1/2} e^{-x^2} dx = \frac{1}{\beta \epsilon} \left[\frac{1}{\beta \epsilon} \right]^{1/2} \left[\frac{\pi}{2} \right]^{1/2} = \frac{2\pi m}{h^2 \beta} \int_0^{1/2} X$$ Substitute, $$X^2 = n^2 \beta \varepsilon$$, $dn = dx/(\beta \varepsilon)^{1/2}$ $$q_x = \left[\frac{2\pi m}{h^2 \beta}\right]^{1/2} X$$ Substitute for ε #### Independent motion in three dimensions $$\varepsilon_{n_1n_2n_3} = \varepsilon_{n_1}^{(X)} + \varepsilon_{n_2}^{(Y)} + \varepsilon_{n_3}^{(Z)}$$ Energy is a sum of independent terms $$\begin{aligned} q &= \sum_{all\ n} e^{-\beta \epsilon(X)}_{n1} -^{\beta \epsilon(Y)}_{n2} -^{\beta \epsilon(Z)}_{n3} \\ &= \left[\sum_{n1} e^{-\beta \epsilon(X)}_{n1} \right] \left[\sum_{n2} e^{-\beta \epsilon(Y)}_{n2} \right] \left[\sum_{n3} e^{-\beta \epsilon(Z)}_{n3} \right] \\ &= q_x q_y q_z \end{aligned}$$ $$q = \left[\frac{2\pi m}{h^2 \beta}\right]^{3/2} XYZ$$ $$q = \frac{V}{\Box^3} \quad \Box = h \left(\frac{\beta}{2\pi m}\right)^{1/2} = \frac{h}{(2\pi m kT)^{1/2}}$$ $$\Box \text{ has dimensions of length, thermal wavelength}$$ $$J = kg m^{-2} s^{-2}$$ Question: How many more quantum states will be accessible for $^{18}O_2$ compared to $^{16}O_2$, if it were to be confined in a box of 1 cm³? ## How to get thermodynamics? All information about the thermodynamic properties of the system is contained in the partition function. Thermal wavefunction. $$E = \Sigma_i \; n_i \epsilon_i$$ $$E = \frac{N}{q} \Sigma_i \epsilon_i \; e^{-\beta \epsilon i} \quad \textit{Most probable configuration is dominating.}$$ $$\textit{We use Boltzmann distribution.}$$ $$\textit{We know,} \quad \epsilon_i e^{-\beta \epsilon i} = - \; \frac{d}{d\beta} e^{-\beta \epsilon i}$$ $$E = -\frac{N}{q} \quad \Sigma_{i} \quad \frac{d}{d\beta} \quad e^{-\beta\epsilon i} = -\frac{N}{q} \quad \frac{d}{d\beta} \quad \Sigma_{i}e^{-\beta\epsilon i} = -\frac{N}{q} \quad \frac{dq}{d\beta}$$ $$U = U(0) + E \qquad 1. \quad All \ E's \ are \ relative$$ $$E \ is \ the \ value \ of \ U \ relative \ to \ T = 0.$$ $$U = U(0) \frac{N}{q} \left[\frac{\partial q}{\partial \beta} \right]_{v}$$ $$U = U(0) - N \left[\frac{\partial lnq}{\partial \beta} \right]_{v}$$ 2. Derivative w.r.t. β is partial as there are other parameters (such as V) on which energy depends on. Partition function gives internal energy of the system. ### How to get entropy? For a process, change in internal energy, U = U(0) + E $$U = U(0) + \Sigma_i n_i \varepsilon_i$$ Internal energy changes occur due to change in populations ($n_i + dn_i$) or energy states ($\epsilon_i + d\epsilon_i$). Consider a general case: $$dU = dU(0) + \sum_{i} n_{i} d\epsilon_{i} + \sum_{i} \epsilon_{i} dn_{i}$$ For constant volume changes, $dU = \Sigma_i \epsilon_i dn_i$ $$dU = dq_{rev} = TdS \qquad dS = dU/T = k \beta \Sigma_i \epsilon_i dn_i$$ $$dS = k \Sigma_i (\partial \ln W/\partial n_i) dn_i + k\alpha \Sigma_i dn_i$$ $$\beta \epsilon_i = (\partial \ln W/\partial n_i) + \alpha$$ Number of molecules do not change. Second term is zero. $$dS = k \Sigma_{i}(\partial \ln W/\partial n_{i}) dn_{i} = k (d\ln W)$$ $$S = k \ln W$$