
CY1001 T. Pradeep

Quantum               classical

Various forms of energies.

Everything turns out to be controlled by temperature

Statistical thermodynamics
Lectures 7, 8

Ref. Atkins 7th or 8th edition
Alberty, Silbey, Bawendi 4th edition

Energy levels Bulk properties



Need for statistical thermodynamics
Microscopic and macroscopic world 
Energy states
Distribution of energy - population
Principle of equal a priori probabilities

Configuration  - instantaneous
n1, n2,…molecules exist in states with energies ε0, ε1,…
N is the total number of molecules
{N,0,0,…} and {N-2, 2,0,…} are configurations 
Second is more likely than the first

{1,1}, {2,0}, {0,2}
Weight of a configuration = how many times 

the configuration can be reached.

0

ε

Reference to zero

Fluctuations  occur



Energy

0

A configuration {3,2,0,0,..} is chosen in 10 different ways   - weight of a configuration
How about a general case of N particles ? {n0,n1,…..} configuration of N particles. 

A configuration {N-2,2,0,0,…}
First ball of the higher state can be chosen in N ways, because there are N balls
Second ball can be chosen in N-1 ways as there are N-1 balls
But we need to avoid A,B from B,A.
Thus total number of distinguishable configurations is, ½ [N(N-1)]  

W = N!       
W is the weight of the configuration.

How many ways a configuration can be achieved.

n0!n1!n2!....

1 2 3 4 5 6 7 8 9 10

N! ways of selecting balls (first ball N, second (N-1), etc.)
n0! ways of choosing balls in the first level. n1! for the 
second, etc.

Distinct ways, 

Generalized picture of weight



ln W = ln  N!
n0! n1! n2!...

= ln N!- ln(n0! n1! n2!..)

=ln N! -(ln n0! +ln n1! +ln n2!...)

=ln N! -Σiln ni!

ln x!≈ x ln x-x Stirling’s approximation

ln W = (N ln N - N) - Σi (ni ln ni – ni) = N ln N –Σini ln ni

Better to use natural logarithm



ni
N

= e -βε
i

Σi e -βε
i

β =  1
kT

Which is the dominating configuration having 
maximum weight?

Generalized approach is to set dW = 0

There are problems as any configuration is not valid.

1. Energy is constant.  Σi ni  εi  = E

2. Constant molecules. Σi ni = N

Boltzmann distributionPopulations in the 
configuration of greatest 
weight depends on the 
energy of the state.

i is a sum over available states

W

ni

Temperature gives the most probable populations



pi = e -βε
i

q

q =Σ levels i gi e-βε
i

q =Σi e -βε
i

lim T→0 q = g0

lim T→ ∞ = ∞

There are several ways of looking at i

How to look at partition functions?

Look at limiting cases

1. Partition function is the number of available states.
2. Partition function is the number of thermally accessible states.

3. How molecules are ‘partitioned’ into available states.

How to look at thermodynamic properties?

Molecular partition function

Because, ε0 = 0
For all higher levels ε is finite.
e-βε =1. e-x is 0 when x is ∞.

Boltzmann distribution – population,

All terms will reduce to 1. 
e-x is 1 when x is 0When number of states is finite, 

we will not get ∞.

Another form of q:



Evaluation of molecular partition function

1 + x + x2 + x3 + ….= 1/(1-x)

q = 1 + e –βε + e –2βε +  e –3βε +…= 1 + e –βε + (e –βε)2 +  (e –βε)2 +…=1/(1- e –βε)

Fraction of molecules in energy levels is,
pi = e –βε

i/q =  (1- e –βε) e –βε
i

Discussion of figure, next slide

For a two level system,

po = 1/(1 + e –βε)  
p1= e –βε/q =  e –βε/ (1+ e –βε)

As T  ∞, both po and p1 go to ½.

p

ε

0

ε
2ε

Consequences?



Low temperature High temperature



qx = 2╥ m
h2β X

1/2

En = n2h2 

8 mX2 n =1,2….

εn = (n2-1)ε ε =
h2

8mX2

qx = Σ∞
n=1 e -(n2-1)βε

qx = ∫∞1 e -(n2-1)βε dn  energy levels are close,  sum becomes an integral

qx = 1
βε

1/2

∫0∞ e -x2dx = 1
βε

1/2 ╥ 1/2

2 =
2╥m
h2β

1/2
X

Approximations: Partition functions are often complex. Analytical expressions 
cannot be obtained in several cases. Approximations become very useful. 
For example, partition function for one dimensional motion

No big difference, if we take the lower limit to 0 and replace n2-1 to n2.

Substitute, X2 = n2βε, dn = dx/(βε)1/2 Substitute for ε



q =Σ all n e -βε(X)
n1

–βε(Y)
n2 

-βε(Z)
n3

= Σn1 e- βε(X)
n1 Σn2 e -βε(Y)

n2 Σn3e -βε(Z)
n3

= qxqyqz

q = 2╥m
h2β

3/2

XYZ

q = V
Ʌ3 Ʌ = h

β
2╥m = 

h
(2╥mkT)1/2

1/2
Ʌ has dimensions of length, 
thermal wavelength

J =kg m-2 s-2

εn1n2n3 = εn1 
(X) + εn2 

(Y) +εn3 
(Z)  Energy is a sum of independent terms

Independent motion in three dimensions

Question: How many more quantum states will be accessible for 18O2 compared to 
16O2, if it were to be confined in a box of 1 cm3?



E = - N
q

Σi
d

dβ
e –βεi = -N

q
d

dβ
Σie-βεi=

N
q

dq
dβ

U = U(0) + E 

U = U(0) -N
q

∂q
∂β v

U = U(0)- N ∂lnq
∂β v

E = Σi niεi

E =
N
q Σiεi e-βεi

εie –βεi = - d
dβ

e-βεi

How to get thermodynamics?
All information about the thermodynamic properties of the system is  contained 
in the partition function. Thermal wavefunction.
Total energy

Most probable configuration is dominating.
We use Boltzmann distribution. 

We know,

1. All E’s are relative
E is the value of U relative to T = 0.

2. Derivative w.r.t.  β is partial 
as there are other parameters 
(such as V) on which energy 
depends on.

Partition function gives internal energy of the system.



For a process, change in internal energy, U = U(0) + E 

U = U(0) + Σi niεi

How to get entropy?

Internal energy changes occur due to change in populations (ni + dni) 
or energy states (εi + dεi). Consider a general case:

dU = dU(0) + Σi ni dεi + Σi εi dni

For constant volume changes, dU = Σi εi dni 

dU = dqrev = TdS dS = dU/T = k β Σiεi dni

dS = k Σi(∂lnW/∂ ni ) dni + kαΣi dni

Number of molecules do not change. Second term is zero.

dS = k Σi(∂lnW/∂ ni ) dni = k (dlnW)

S = klnW

β εi = (∂lnW/∂ ni ) + α
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