
Lecture 4
Clausius Inequality



Entropy distinguishes between 
irreversible and reversible processes.

irrev
∆S > 0

rev
In a spontaneous process, 

there should be a net increase 
in the entropy of 

the system and the surroundings.  



How is this?
For a process to be spontaneous, total entropy 

change, ∆Stot has to be greater than zero.
∆Stot = ∆S + ∆Ssurr > 0

The entropy change of the  system is ∆S  

To make this change surroundings lost –qirr

∆S – qirr /T >0
T∆S > qirr



For a reversible process ∆S – qrev/T = 0
T∆S = qrev

For an infinitesimal process,
irr

TdS > dq
rev

This statement is called the Clausius inequality.
If the system is isolated, dS ≥ 0

Entropy of an isolated system increases with 
time



Spontaneous processes entropy 
increases. 

“Entropy is Time’s Arrow”

Arthur Stanley Eddington (1882-1944)



Entropy of the universe increases as a result of every spontaneous
process.  When the entropy reaches a maximum, an equilibrium 
state is reached and no further change occurs.  Thus Clausius put 
forward the first and second laws as,

1. Energy of the universe is constant  (First Law)
2. Entropy of the universe tends to a maximum 

(Second Law)
wrev > wirr T∆Ssystem > qirr

qrev > qirr ∆Ssystem > qirr/T



How do we derive conditions for 
equilibrium and spontaneity?

For an isolated system
∆S ≥ 0, > sign for a spontaneous process and = for equilibrium.

In the case of open or closed system, there are two ways
1. Evaluate ∆S for systems and surroundings.
∆Stotal =∆Ssystem +  ∆Ssurroundings

∆S ≥ 0
<

> Refers to spontaneous = refers to reversible or equilibrium < refers
to non-spontaneous processes.



2. Other way is to define entropy change of the system alone.

dStotal = dSsystem + dSsurroundings 

dqrev represents heat absorbed by the system and −dqrev is the heat 
lost by the surroundings.

dSsurroundings = −dqrev/T
Since entropy of the universe increases,

dSsystem − dqrev/T ≥ 0
TdSsystem − dqrev ≥ 0

We know from first law
dUsystem = dqrev − dwrev

For P – V work, dwrev = PdV
dqrev = dUsystem +  PdVsystem
TdSsystem – [dUsystem +  PdVsystem] ≥ 0

This relation is in terms of the system variables alone.



If there is other work in addition to P – V work,
TdSsystem – [dUsystem + PdVsystem + dwother] ≥ 0
Combined law

Now conditions for spontaneity and equilibrium can be 
found out by subjecting it to various conditions.



Conditions:
TdSsystem – [dUsystem + PdVsystem + dwother] ≥ 0
TdSsystem − dqrev ≥ 0

a). Transformation of an isolated system
dU = 0, dq = 0, dS ≥ 0

b). System at constant U and V
dU = 0, dV = 0 TdS ≥ 0

For spontaneous transformation, TdS > 0 and for 
equilibrium, TdS = 0.



It is important to note that it is U not T that is constant.  When T 
is kept constant not U, it is possible that dS ≠ 0 at equilibrium.  

Let us  consider vaporization of a liquid at a temperature. 
At equilibrium, ∆S  will not be zero since vapour at a given 
temperature will have more  entropy than the liquid since
it uses latent heat of vaporization upon  evaporation.  

Thus it is important to mention (∆S) U, V = 0 for  equilibrium.

c). Constant T and V, dV = 0, dT = 0
TdS – dU ≥ 0
d(TS – U) ≥ 0 since dT = 0
-d(U-TS) ≥0
Decrease in A has to be positive
(dA)T, V ≤ 0



What is A?

For a thermodynamic reversible isothermal process, ∆S = qrev/T
∆A = ∆U – qrev

From first law, ∆U = qrev – Wrev
–Wrev = ∆U – qrev
∆A = – Wrev or -∆A = Wrev

Decrease in A is equal to the work done by the system.  
Since Wrev = Wmax, decrease in A is the maximum isothermal work that can 
be done by the system.

Under constant T and V can the system do 
work?
A is not defined only for this condition!!



Hermann von Helmholtz
Born: 31 Aug 1821 in Potsdam, Germany
Died: 8 Sept 1894 in Berlin, Germany



Most transformations do not occur at 
constant volume and 
dA is not used as a good criterion.

A1 = U1 – T1S1
A2 = U2 – T2S2
∆A = ∆U – ∆(TS)

Constant T,
∆A = ∆U – T∆S



d). Constant temperature and pressure

dT  = 0, dP = 0
d(PV) = PdV; d(TS) = TdS
TdS – (dU+PdV) ≥ 0
d(TS) – d (U+PV) ≥ 0
U + PV = H
d(TS) – dH ≥ 0
–d(H – TS) ≥ 0
d(H – TS) ≤ 0

H – TS is another state function 
called Gibbs function or free energy, G 
dG T,P ≤ 0 or ∆G T,P ≤ 0



For an irreversible change at 
constant T and P, ∆G < 0.  
For equilibrium, ∆G = 0. Since most 
of the transformations occur at 
constant T and P, ∆G is the most 
useful quantity in defining 
equilibrium.



∆G = ∆H – ∆(TS)
At constant temperature and pressure,
∆G = ∆H – T∆S
∆G = ∆U + P∆V – T∆S
∆U  – T∆S = ∆A
∆G = ∆A + P∆V
– ∆A = Wmax
– ∆G = – ∆A – P∆V
= Wmax – P∆V
Decrease in free energy, – ∆G, at constant temperature and 
pressure corresponds to the maximum work other than the P –
V work  that the system is capable of doing under reversible 
conditions. 



Conditions of equilibrium

(dS)U, q ≥ 0 
(TdS)U, V ≥ 0
(dA)T, V ≤ 0
(dG)T, P ≤ 0



G is a function of P and T
G = f(P, T)
dG = (∂G/∂P)T dp + (∂G/∂T)P dT 1
G = H – TS
= U + PV – TS
dG = dU + PdV + VdP – TdS – SdT
dU = TdS – PdV
dG =  VdP – SdT 2

Comparing 1 and 2
(∂G/∂P)T = V
(∂G/∂T)P = –S



T

G

Gas

Liquid
Solid

Variation of G with T

(∂G/ ∂T)P = -S



P

G

Gas

Liquid

Solid

Variation of G with P

(∂G/ ∂P)T = V



S and V are always positive quantities.  G should increase 
with P at constant temperature and decrease with temperature at 
constant pressure.  For a finite change in free energy at constant 
temperature,

∫P2
P1 dG = ∫P2

P1VdP 

For solids and liquids, the volume change will be small and 
∆G = V∆P

Such changes in free energy are very small.
For gases, since volume change is large, ∆G is large.

∫2
1 dG = ∫2

1 nRT/P dP
= nRT ln P2/P1

This relation shows that G is (1) extensive and (2)  a state 
function.  ∆G for a change 1 → 2 is the same whether the change of 
state is carried out reversibly or irreversibly.



Standard free energies

As in the case of H, S etc., only difference in G is significant.  
Since G is a state function, arithmetic operations can be performed 
with it.  In other words, type of operations performed with H can be 
performed with G.  Hess’s law is valid here too. ∆G values can be 
obtained by knowing standard free energy of formation.
Standard free energy is defined as the free energy change 
accompanying the formation of a compound from the elements; 
all the reactants and products in their standard states.  Any element 
in the standard state at 298°K has zero free energy.

For a spontaneous reaction, ∆Gf° < 0 or for equilibrium 
∆Gf° = 0 and > 0 for non-spontaneous process. 



Considering the relation,
∆G = ∆H − T∆S,
For ∆G to be negative, both ∆H and ∆S make significant 
contribution.  Let us consider the four possibilities:

∆H ∆S ∆G Comment

1 −ve +ve −ve Spontaneous

2 +ve −v
e

+ve Non Spontaneous

3 −ve −v
e

At low temperature T∆S may be below ∆H so that 
reaction may occur at low temperature.

4 +ve +ve At high temperature, T∆S may be high so that ∆G 
may become negative and the reaction may occur.



Gibb’s Helmoholtz equation

∆Gf° values predict the feasibility of a reaction at 298 K.  
∆G values at any temperature can be calculated by 
Gibbs - Helmholtz equation.

∆G = ∆H  − T∆S
(∂G/∂T)P = −S
(∂∆G/∂T)P = −∆S
∆G  = ∆H + T (∂∆G/∂T)P (1)

∆G can be evaluated from emf measurement since ∆G  = −nFE
Where n = number of electrons evaluated, F = Faraday, 
E = potential of the cell. F= 96500 Coulombs/gm. equiv.



Divide eqn. 1 by –T2

−∆G/T2 + 1/T (∂∆G/∂T)P = −∆H/T2

Write −1/T2 as ∂/∂T (1/T)
∆G [∂/∂T (1/T)]P +1/T (∂∆G/∂T)P = −∆H/T2

{UdV + VdU = d(UV)}

[∂/∂T (∆G/T)]P =  −∆H/T2

Helmholtz equation:
[∂/∂T (∆A/T)]P =  −∆U/T2]


