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1. Introduction 
 
With the confluence of interest in nanotechnology, the availability of 
experimental tools to synthesize and characterize systems in the nanometer scale, 
and computational tools widely accessible to model microscale systems by 
coupled continuum/molecular/quantum mechanics, we are poised to unravel the 
traditional gap between the atomic and the macroscopic world in mechanics and 
materials. 
 
Nanoscale materials are used in conjunction with other larger components which 
have different response times. Hence, a treatment of such systems involves 
calculations with different time and length scales. Single scale methods such as 
“ab initio” quantum mechanical methods or molecular dynamics (MD) will have 
difficulty in analyzing such hybrid structures due to the limitations in terms of 
the time and length scales. Classical molecular dynamics simulations have 
become prominent as a tool for elucidating complex physical phenomena 
because of the availability of accurate interatomic potentials for a range of 
materials. However, the length and time scales that can be probed using 
molecular dynamics are still fairly limited.1 

 
The study of nanoscale mechanics and materials requires a scaling up to the 
order of several microns, consisting of billions of atoms. Such large systems 
cannot be handled by molecular dynamics simulations to-date. Hence, there is a 
need for the development of multi-scale approaches. One possible approach that 
can be applied is to use molecular dynamics only in localized regions where the 
atomic-scale dynamics are important, and a continuum simulation method 
everywhere else. In particular, these methods do not satisfactorily address the 
issue of disparate time scales in the two regions, and provide a rather simplified 
treatment of the interface between the atomistic and continuum regimes.1 

 
This treatment promises to enable the study of nanoscale systems such as 
nanocomposites, carbon nanotubes, nanoalloys, nanowires and nano-fluidic 
devices. 
 



2. Molecular dynamics 
 
Molecular dynamics simulation numerically solves Newton's equations of 
motion on an atomistic or similar model of a molecular system to obtain 
information about its time-dependent properties. It has been used to calculate the 
collective or average thermochemical properties of various physical systems.1

 
There are two basic assumptions made in standard molecular dynamics 
simulations: 
 
• Molecules or atoms are described as a system of interacting material points, 

whose motion is described dynamically with a vector of instantaneous 
positions and velocities. The atomic interaction has a strong dependence on 
the spatial orientation and distances between separate atoms. This model is 
often referred to as the soft sphere model, where the softness is analogous to 
the electron clouds of atoms. 

 
• No mass changes in the system. Equivalently, the number of atoms in the 

system remains the same.  
 
The simulated system is usually treated as an isolated domain system with 
conserved energy. However, non-conservative techniques which model the 
dissipation of the kinetic energy into the surrounding media prove useful in the 
multiple-scale simulation methods. 
 
The molecular dynamics simulation is most typically run with reference to a 
Cartesian coordinate system. 
. 

 
Fig. 1. Coordination in atomic systems1 



The equation of motion of a system of interacting particles, can be written in 
terms of a Lagrangian function L as, 
 

 
 
Here, ri=(xi,yi,zi) is the radius vector of atom i, Fig. 1, and N is the total number of 
simulated atoms. The spatial volume occupied by these N atoms is usually 
referred to as the molecular dynamics domain. 
 
In order to provide identical equations of motions in all inertial coordinate 
systems, the Lagrangian function must also comply with the Galilean invariance 
principle.  Due to the homogeneity of time and space, and also isotropy of space 
in inertial coordinate systems, the equations of motion must be independent of 
the choice of initial time of observation, the origin of the coordinate system, and 
directions of its axes. These basic principles are equivalent to the requirements 
that the Lagrangian function cannot explicitly depend on time, directions of the 
radius and velocity vectors, and it can only depend on the absolute value of the 
velocity vector.1 

 
Interaction between the particles can be incorporated by adding a potential term 
to the Lagrangian function.  This potential term can be quite complicated and 
may not represent the interactions accurately.  The nature of this interaction is 
due to quantum effects which govern the valence, bond energy and the topology 
of the system.1 

 
There are several forms of the potential term that can be employed for molecular 
dynamics simulations. The most commonly employed 12-6 potential is the 
Lennard-Jones Potential which has the form below.1 

 
The first term represents the atomic repulsion dominating at small distances and 
the second term represents the attraction between the atomistic pair. 
 
The three-body potentials fail to describe the energetics of all possible bonding 
geometries, while a general form for a four and five-body potential contains too 
many free parameters. As a result, a variety of advanced two-body potentials 



have been proposed to efficiently account for the specifics of a local atomistic 
environment by incorporating some particular multi-body dependence. 
 
Limitations 
 
The major drawback of molecular dynamics is that the length and time scales 
that can be probed are still fairly limited. Efficiency and accuracy are the two 
most important criteria guiding the development of simulation methods. Both 
depend on the complexity of the interatomic potentials, the degrees of freedom 
of the system and the time-integration algorithms used in the simulation. With 
the computational power available today, a typical molecular dynamics 
simulation domain contains several millions of atoms. Consequently, molecular 
dynamics simulations have their own limitations with respect to boundary 
conditions, time steps and incorporation of temperature effects.1

 
3. Modeling of nano-indentation:  
 
The workpiece and a tool are assumed to consist of Copper and Diamond 
respectively.  The periodic boundary conditions are used in the transverse 
direction (x direction).     

   
 Figure 2. Molecular dynamics simulation model2 

  
The force acting on an individual atom is modeled using a Morse potential.  The 
form of the Morse potential is  



 
where φ(rij) is a pair potential energy function, D, α, and r0 correspond to the 
cohesion energy, the elastic modulus and the atomic distance at equilibrium, 
respectively.2 

 
The shape of the Morse potential is shown in Fig. 3.  The force acting on the ith 
particle is calculated as the gradient of the Morse potential. 

 
where Fi is the resultant force on atom i, mi is the mass of atom i, ri is the position 
of atom i, and N is the total number of atoms. 
 

 
Figure 3. Shape of various Morse-type potentials 

 
The initial displacements of the copper atoms in the workpiece material are 
obtained from its lattice structure. Initial velocities are assigned from the 
Maxwell distribution, and the magnitudes are adjusted so as to keep the 
temperature in the system constant according to 



 
where νi is the velocity of atom i, T0 is a specified temperature, kB is Boltzmann’s 
constant, and N

B

f is the number of degrees of freedom of the system. 
 
The ratio of the cutting force to the thrust force is defined as coefficient of 
resistance f, i.e. f’ = Fy/Fz . Here, Fy and Fz are the cutting force in the y-direction 
and the thrust force in the z-direction on the tool respectively. This coefficient 
can be used to measure the machinability and resistance of cutting on the atomic 
scale.2 

 

  
 
Figure 4. 
(a) The relationship between the coefficient of resistance and the angle of the pin tool.  
(b) The map in the grooving produced by a pin tool which cut on a softer metal.2 

 
The cutting area A2 and thrust area A1 are worked out using elementary 
geometry principles. 

 
 

 
 



Molecular dynamics results deviate from f’ when θ is below 45◦ as a result of the 
accumulation of atoms in front of the pin. This increases the density, with 
corresponding increase in resistance and thus increasing the cutting force 
required to maintain a constant cutting velocity. It is noted particularly that the 
coefficient of resistance on the micro-scale is the result of average forces, and it 
neglects the pile-up of material ahead of the pin tool and the crumpling and 
accumulation of material around the grooving path. The cutting mechanism is 
thus revealed on the atomic scale. Under 90◦, molecular dynamics simulation 
should be used.2 

 

 
Figure 5.  Behavior of nano-lithography process at different time steps: (a) 10 ps; 
(b) 20 ps; (c) 35 ps; (d) 50 ps.3 

 
The stick phenomenon results from an increasing accumulation of material 
ahead of the pin tool, and an increasing adhesive effect between pin and 
workpiece material as the area of contact increases. The slip phenomenon occurs 
when the debris crumples.  Figure 6 shows the variation of the cutting forces 
with the time step. The simulated model is seen in Figure 5 for various time 
steps.  



 
Figure 6. Variation of cutting forces and stick–slip phenomenon.2 

 
This simulation evaluates the effect of the geometry of the pin tool on the cutting 
mechanism and shows that this effect has a significant influence on the degree of 
the machinability. 
 
4. Molecular mechanics approach for modeling properties of carbon nanotube  
 
Atomic interactions become crucial during the investigation of mechanical 
properties at near molecular scales. Quantum and molecular mechanics aim to 
correlate the atomic positions to the system energy. The quantum mechanics 
approach predicts the energy of the system based on the calculations of the 
electronic structure of molecules. Due to cumbersome calculations, it is preferred 
to neglect the electronic structure by applying the Born-Oppenheimer 
approximation. This is the basis for the molecular mechanics approach where the 
energy is defined only as a function of the nuclear positions irrespective of the 
electronic structure. 4
 
Here a molecular mechanics approach is used to analytically predict the size 
dependant properties of a carbon nanotube. The total system potential energy 
can be expressed as sum of individual energy terms as, 

 
where Uρ, Uθ, Uτ, and Uω are energies associated with bond stretching, angle 
variation, inversion and torsion, respectively; UvdW and Ues are associated with 



van der Waals and electrostatic interactions. A schematic representation of the 
electronic structure of a graphene sheet illustrating source of each energy term is 
shown in the Figure 7. 

 
Figure 7.  Bond structures and corresponding energy terms in a graphene cell.4  
The bond stretching energy Uρ, can be described using many models. Very 
accurate models like the three parameter morse potential model can be used. But 
in most cases, harmonic energy functions suffice. The angle variation Uθ and the 
inversion energy Uω are also described by harmonic functions as,  

 

 

 
where, Ki, Cj, Bk are the force constants for bond stretching, angle varience and 
angle inversion. dRi, dθj and dωk are the variance in the bond i, bond angle j and 
the inversion angle k.  
The torsional energy in molecular mechanics is primarily used to correct the 
remaining energy terms rather than to represent a physical process. The torsional 
energy is modeled by a cosine series. 

 
where Ai is the “barrier” height to rotation of bond i; ni is the multiplicity which 
gives the number of minima in the function as the bond is rotated through 
2π. Non-bonding energies such as the electrostatic force and van der Waals force 
are modeled using Coulomb’s law and 12-6 Lennard-Jones potential 
respectively.4  
 



4.1. Analytic approach for modeling single walled carbon nanotubes 
 
For a single-walled carbon nanotube subjected to axial loadings at small strains, 
torsion, inversion, van der Waals and electrostatic interactions are negligible. 
Thus in such cases, the bond stretching and the angle variation terms are the 
most significant in the potential energy of the system, i.e.  
 

 
A armchair carbon nanotube subjected to a longitudinal tensile stress as shown is 
considered.In this configuration, there are three chemical bonds a, b, b and three 
bond angles α, β, β associated with each atom.(Figure 8) The longitudinal 
external tension stress will result in a bond elongation db and two bond angle 
variances dα and dβ. 
 

 
Figure 8. (a) Schematic illustration of a (n, n) carbon nanotube, (b) nomenclature, 
(c) force and moment distributions in stick b when the tube subjected to an axial 
tensile stress, (d) equivalent forces exerted on the right half of stick b by the left 
half, (e) moment equilibrium.4 



Consider the force and moment in stick b as shown. We denote the force 
contributed by bond b along the external tension direction as f so that the total 
axial force on the nanotube is 2nf. Force equilibrium of bond extension leads to  

 
The total moment resulting from bond angle distortion in plane b–b can be 
expressed by (C dα + C dβ cosϕ), where C is the couple per unit twist and  ϕ, the 
torsion angle between planes b–b and a–b, can be calculated by 

 
Hence, the moment balance equation is, 

 
Using geometric relations, these expressions can be simplified to develop an 
analytic expression for Young’s modulus and Poisson’s ratio.4 

 
where 

 
The comparison of the analytic expressions developed with previous 
experimental results show good correlation as seen in Fig. 9.  

 
Figure 9. .Comparison between the predictions from the present model with 
existing results (Popov et al6) on the size-dependence of Young’s modulus4 

 



5. Continuum Mechanics approach 
 
A nanoscale continuum theory is established based on the higher order Cauchy–
Born rule to study the mechanical properties of carbon nanotubes. The theory 
bridges the microscopic and macroscopic length scale by incorporating the 
second-order deformation gradient into the kinematic description. The 
interatomic potential and the atomic structure of carbon nanotube are 
incorporated into the constitutive model. Therefore carbon nanotube can be 
viewed as a macroscopic generalized continuum with microstructure.5  
 
5.1 Cauchy–Born rule for crystal films 
 
Cauchy–Born rule is a fundamental kinematic assumption for linking the 
deformation of the lattice vectors of crystal to that of a continuum deformation 
field. This rule can be applied to systems without diffusion, phase transitions, 
lattice defect, slips or other non-homogeneities. Figures 10 and 11 represent the 
Cauchy born principle and its application to curved surfaces respectively.  
 

 
Figure 10.  Illustration of Cauchy-Born principle5

 

 
 Figure 11.  Cauchy-Born rule applied directly to curved films5  



From the classical nonlinear continuum mechanics point of view, the 
deformation gradient tensor F is a linear transformation, which only describes 
the deformation of an infinitesimal material line element dX in the undeformed 
configuration to an infinitesimal material line element dx in deformed 
configuration.  By taking the finite length of the initial lattice vector into 
consideration, the corresponding deformed lattice vector should be expressed as 

 
Assuming that the deformation gradient tensor is smooth enough, a second 
order Taylor expansion is used. 

 
Using the deformation gradient, we get the deformed lattice vector as 

 
This gives better accuracy as compared to the standard Cauchy-Born rule.  The 

 
accuracy can be enhanced by using more higher order terms.5 

Figure 12. Higher order Cauchy-Born rule applied directly to curved films5 

 
A hyper-elastic constitutive model is developed based on the higher-order 
Cauchy-Born rule.  Assuming that the energy can be homogenized over a 
representative volume in the undeformed configuration, the strain energy can be 
expressed as 

 
 



 
Figure 13. Representative cell corresponding to an atom I.6 

 
A planar graphite sheet in equilibrium energy state is defined as the undeformed 
configuration. The current configuration of the nanotube can be seen as a 
deformed state from the initial configuration by the following mapping: 

 
where (X1,X2) are the material coordinates of a point in the undeformed 
configuration and (x1,x2,x3) are its images in the current configuration.  R is the 
radius of the modeled single walled carbon nanotube, which is described by a 
pair of parameters (n,m). The radius R can be evaluated by  

, 
where, a0 is the equilibrium bond length distance in the graphene sheet.5 

 
The energy per atom as the function of diameters for armchair and zigzag single 
walled carbon nanotubes relative to that of the graphite sheet is calculated. It is 
shown that the trend is almost the same for both armchair and zigzag 
configurations. The energy per atom decreases with increase of the tube diameter 
with E(D)-E(∞) = O(1/D2), where E(∞) represents the energy per atom for 
graphite sheet.5 

 
Figure 13 compares the energies of the armchair and zigzag configurations 
relative to predicted from the current model with other models.   



 
Figure 13. The energy (relative to graphite) per atom versus tube diameter.5 

 

 
 
Figure. 14. Comparison between the results obtained with different methods 
Young’s modulus Open symbols denote armchair, solid symbols denote zigzag. 
Dashed horizontal line denotes the results of graphite obtained with the present 
approach.5

 
As seen, the results agree well with those obtained by other experimental, atomic 
modeling and continuum concept based studies. 



6. Bridging scale methods 
 
The bridging scale consists of a two-scale decomposition in which the coarse 
scale is simulated using continuum methods, while the fine scale is simulated 
using atomistic approaches. The bridging scale offers unique advantages in that 
the coarse and fine scales evolve on separate time scales, while the high 
frequency waves emitted from the fine scale are eliminated using lattice 
impedance techniques. Fig. illustrates one such bridging scale technique 
involving molecular dynamics and finite element method.8 

 

 
Figure 15. Schematic illustration of bridging scale.8 

 
7. Conclusions 
 
A molecular mechanics approach to nanoscale systems was studied and it was 
compared with continuum mechanics approach. It is observed that molecular 
mechanics approach underestimates the modulus of elasticity and continuum 
methods based on Cauchy-Born rule overestimate the modulus of elasticity.  
Further, the requirement of handling multiple time scales and length scales 
forces the usage of bridging methods to study nanoscale systems. 
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