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Quantum Dots - Seeds of Nanoscience
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A quantum dot is a crystal that often consists of just a few
thousand atoms. In terms of size, it has the same relationship
to a football as a football has to the size of the Earth.

©Johan Jarnestad/The Royal Swedish Academy of Sciences



Remembering pioneers

Michael Faraday — Divided metals

Lord Kelvin — Melting depends on size?

Richard Feynman, Nobel Prize 1965 —
Plenty of room at the bottom

Harold W. Kroto, Richard E. Smalley and
Robert F. Curl, Nobel Prize 1996

Andre Geim and Konstantin Novoselov,
Graphene, Nobel Prize 2010

Jean Pierre Sauvage, J. Fraser Stoddart, and

Bernard Lucas Feringa, Molecular machines
Nobel Prize 2016
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Quantum effects arise when particles shrink in size
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G. Dong, H. Wang, G. Chen, Q. Pan, J. Qiu, Frontiers in Materials 2015, 2.



Volume 91, number 6

CHEMICAL PHYSICS LETTERS

PRODUCTION OF LARGE SODIUM CLUSTERS (Na,,, x < 65)

BY SEEDED BEAM EXPANSIONS

Manfred M. KAPPES , Roland W. KUNZ * and Emst SCHUMACHER
Institute of Inorgame and Physical Chemistry, Untversity of Bern, CH-3000 Bern 9, Switzerland

Receiwved 10 August 1982
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Fig 1 Schematic of the seeded-beam apparatus.
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Gas phase cluster spectroscopy Gas phase
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Gas phase and solution phase

Magic clusters

Fig. 1 Organization of full-shell clusters: a first single atom (purple) is surrounded by 12 others (green) to give a one-shell cluster M 3. 42 atoms
(red) can be densely packed on the 12 green atoms ending with the Mss two-shell cluster, followed by 92 atoms (yellow) and 162 atoms (blue) to
give Mj47 and Mjg9, respectively.

From Gunter Schmidt, Chem. Soc. Rev. 2008, 37, 1909-1930
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Cq: Buckminsterfullerene

H. W. Kroto', J. R. Heath, S. C. O’Brien, R. F. Curl
& R. E. Smalley

Rice Quantum Institute and Departments of Chemistry and Electrical
Engineering, Rice University, Houston, Texas 77251, USA

During experiments aimed at understanding the mechanisms by
which long-chain carbon molecules are formed in interstellar space
and circumstellar shells’, graphite has been vaporized by laser
irradiation, producing a remarkably stable cluster consisting of
60 carbon atoms. Concerning the question of what kind of 60-
carbon atom structure might give rise to a superstable species, we
suggest a truncated icosahedron, a polygon with 60 vertices and
32 faces, 12 of which are pentagonal and 20 hexagonal. This object
is commonly encountered as the football shown in Fig. 1. The Cg,
molecule which results when a carbon atom is placed at each vertex
of this structure has all valences satisfied by two single bonds and
one double bond, has many resonance structures, and appears to
be aromatic.

NATURE VOL. 318 14 NOVEMBER 1985

Fig. 1 A football (in the
United States, a soccerball)
on Texas grass. The Cg,
molecule featured in this
letter is suggested to have
the truncated icosahedral
structure formed by
replacing each vertex on the
seams of such a ball by a
carbon atom.

graphite fused six-membered ring structure. We believe that the
distribution in Fig.3c is fairly representative of the nascent
distribution of larger ring fragments. When these hot ring clusters
are left in contact with high-density helium, the clusters equili-
brate by two- and three-body collisions towards the most stable
species, which appears to be a unique cluster containing 60
atoms.

When one thinks in terms of the many fused-ring isomers
3i_tltlgn_satisﬁcd valences at the edges that would naturally arise
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Synthetic methods

J. CHEM. SOC., CHEM. COMMUN., 1994
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Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid

System

Mathias Brust, Merryl Walker, Donald Bethell, David J. Schiffrin and Robin Whyman
Department of Chemistry, The University of Liverpool, PO Box 147, Liverpool, UK L69 3BX

Using two-phase (water—toluene) reduction of AuCl,~ by sodium borohydride in the presence of an atkanethiol,
solutions of 1-3 nm gold particles bearing a surface coating of thiol have been prepared and characterised; this
novel material can be handled as a simple chemicai compound.

Colloidal solutions of metals have been known for a long time!
and a large variety of preparative techniques is now avail-
able.2-3 Depending on the preparative conditions, the parti-
cles have a tendency to agglomerate slowly, eventualily lose
their disperse character and flocculate. The removal of the
solvent generally leads to the complete loss of the ability to
reform a colloidal solution. Preparation of colloidal metais in a
two-phase system was introduced by Faraday,* who reduced
an aqueous gold salt with phosphorus in carbon disulfide and
obtained a ruby coloured aqueous solution of dispersed gold
particies. Combining this two-phase approach with the more
recent techniques of ion extraction and monolayer self-
assembly with alkane thiols,® a one-step method for the
preparation of an unusual new metallic material of derivatised
nanometre-sized gold particles is described.

The strategy followed consisted in growing the metallic
clusters with the simultaneous attachment of self-assembled
thiol monolayers on the growing nuclei. In order to ailow the

(=}

Fig. 1 TEM pictures of the thiol derivatised gold nanoparticles at (a)
low and (b) high magnification

surface reaction to take place during metal nucleation and
growth, the particles were grown in a two-phase system. Two-
phase redox reactions can be carried out by an appropriate
choice of redox reagents present in the adjoining phases.6 In
the present case, AuCl,~ was transferred from aqueous
solution to toluene using tetraoctylammonium bromide as the
phase-transfer reagent and reduced with aqueous sodium
borohydride in the presence of dodecanethiol (C;,H,sSH).
On addition of the reducing agent, the organic phase changes
colour from orange to deep brown within a few seconds. The
overall reaction is summarized by eqns. (1) and (2), where the

AuCly~(aq) + N(CgHy7)s* (CeHsMe) —
N(CgHy7)a* AuCly~(CsHsMe) (1)

mAuCly~(CeHsMe) + nCyHysSH(CsHsMe) + 3me= —
mC1-(aq) + (Au,)(CioHySH)(CH:Me) (2)

source of electrons is BH4~. The conditions of the reaction
determine the ratio of thiol to gold, i.e. the ratio n/m. The
preparation technique was as follows. An aqueous solution of
hydrogen tetrachloroaurate (30 ml, 30 mmol dm—3) was mixed
with a solution of tetraoctylammonium bromide in toluene (80
ml, 50 mmol! dm~3). The two-phase mixture was vigorously
stirred until all the tetrachloroaurate was transferred into
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Fig. 2 IR spectra of () dodecanethiol and (b) nanoparticles prepared
in the present work. The particles were deposited on an NaCl disc by
evaporation of a drop of a toluene solution.



Observing such clusters
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Fig. 2 Early stages of MS of noble metal clusters. a Photoelectron spectra of Au,q~ cluster compared with Cgo~ at 193 nm and 266 nm™.

(Copyright® 2003 the American Association for the Advancement of Science) b Mass spectra obtained by laser desorption ionization of
dodecanethiol thiol-protected gold clusters, (i) crude mixture of clusters and (ii-vi) separated fractions™’. (Copyright© 1996 John Wiley and Sons)

Chakraborty and Pradeep NPG Asia Materials (2019) 11:48
https://doi.org/10.1038/s41427-019-0149-3




Atomically precise metal clusters as materials
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Structures

Au,, core \
/ Au,, core + the

exterior 12
Au atoms

>150 such clusters

Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883-5885.



and more
eg. glutathione

4-(tert butyl)benzyl 2-phenylethanethiol
mercaptan

Au,q, etc.

trimer,
pentamer, etc,

Au monomer Au dimer
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Ligand Exchange of AusSGs Leading to Functionalized Gold Clusters: Spectroscopy,
Kinetics, and Luminescence

E. S. Shibu,” M. A. Habeeb Muhammed,’ T. Tsukuda,’ and T. Pradeep™'

DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument
Facility, Indian Institute of Technology, Madras, Chennai 600 036, India and Institute for Molecular Science,
Myodaiji, Okazaki 444-8585, Japan

Received: January 18, 2008;
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Evolution of noble metal clusters

1980 1990 2000 Year 2010 2012
|. Chakraborty and T. Pradeep, Chem. Rev. 2017



CHEMICAL
REVIEWS

Atomically Precise Clusters of Noble Metals: Emerging Link between
Atoms and Nanoparticles

Indranath Chakraborty'® and Thalappil Pradeep*

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology
Madras, Chennai 600036, India

© Supporting Information CltatIOnS >2000

ABSTRACT: Atomically precise pieces of matter of nanometer dimensions composed of
noble metals are new categories of materials with many unusual properties. Over 100
molecules of this kind with formulas such as Au,s(SR);g, Auss(SR),4, and Au;g,(SR),, as
well as Agys(SR)is Agyo(S:R)1, and Agy(SR)s, (often with a few counterions to
compensate charges) are known now. They can be made reproducibly with robust
synthetic protocols, resulting in colored solutions, yielding powders or diffractable crystals.
They are distinctly different from nanoparticles in their spectroscopic properties such as
optical absorption and emission, showing well-defined features, just like molecules. They
show isotopically resolved molecular ion peaks in mass spectra and provide diverse
information when examined through multiple instrumental methods. Most important of
these properties is luminescence, often in the visible—near-infrared window, useful in
biological applications. Luminescence in the visible region, especially by clusters protected
with proteins, with a large Stokes shift, has been used for various sensing applications,
down to a few tens of molecules/ions, in air and water. Catalytic properties of clusters, especially oxidation of organic substrates,
have been examined. Materials science of these systems presents numerous possibilities and is fast evolving. Computational
insights have given reasons for their stability and unusual properties. The molecular nature of these materials is unequivocally
manifested in a few recent studies such as intercluster reactions forming precise clusters. These systems manifest properties of the
core, of the ligand shell, as well as that of the integrated system. They are better described as protected molecules or aspicules,
where aspis means shield and cules refers to molecules, implying that they are “shielded molecules”. In order to understand their
diverse properties, a nomenclature has been introduced with which it is possible to draw their structures with positional labels on
paper, with some training. Research in this area is captured here, based on the publications available up to December 2016.

Also the pioneering work of R. W. Murray, Robert L. Whetten, Uzi Landman, Tatuya Tsukuda, Yuichi Negishi, Hannu Hakkinen,
Rongchao Jin, Nanfeng Zheng, Terry Bigioni, Osman Bakr, Kornberg, Jianping Xie, C. M. Aikens, Thomas Buergi, Amala Dass,
Ackerson, De-en Jiang, .... A. W. Castleman Jr., H. Schmidbauer, .... Robin Ras, Olli Ikkala 21



Mass spectrometry and materials science
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Molecular formula, Molecular weight
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New molecules

AU,s, AQys, AQyg

24



Nanfeng Zheng et al. Nature Communications, 2013 5
Terry Bigioni et al. Nature 2013



Molecular structure

Geometric and electronic shells

Gana Natarajan 26
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Ananthu Mahendranath et al. Chem.Comm.2021
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Molecular materials
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U pubs.acs.org/accounts

 Approaching Materials with Atomic Precision Using Supramolecular
;CIuster Assemblies

4 Papri Chakraborty, Abhijit Nag, Amrita Chakraborty, and Thalappil Pradeep™

s DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of
6 Technology Madras, Chennai 600 036, India

Building Blocks

A = atomically precise clusters Supramolecular cluster Materials
B = cyclodextrins, fullerenes, nanoparticles, etc. assemblies with atomic precision

31



Molecules and their properties

Chemical formula

Molecular weight

Critical temperature

Critical pressure

Critical density

Triple point temperature

Triple point pressure

Normal boiling point

Normal freezing point

Density of ice at normal melting point
Maximum demsity, 3.98°C
Viscosity, 25°C

Surface tensicn, 25°C

Heat Capacity, 25°C

Enthalpy of vaponsation, 100°C
Enthalpy of fesion, 0°C
Velocity of saund, (°C
Dielectric constant, 25°C
Electrical conductivity, 25°C
Refractive index, 25°C

Liquid compressibility, 10°C
Coefficient of thermal expansion, 25°C
Thermal Conductivity, 25°C

H,O

18.0148
373.91°C
22.05 MPa
315.0 kg/m’®
0.01°C
615.066 Pa
100.0°C

0.0°C

918.0 kg/m’
999.973 kg/m*
0.889 mN ¢/m’
72 mN/m
4.1796 klkg K
2,257.7 kitkg
3338 kl/kg
1.403 km/s
78.40

& pS/m

1.333

480. % 107 “m*N
256.32 x 107*K™!
0.608 W/m.K

Molecular formula

Molecular weight

Molecular structure

Molecular absorption and emission
Molecular reactions

Molecular assembly

Molecular co-crystals

Phases - phase transitions
Physical properties
Electrical, magnetic
Mechanical properties
Electrochemical properties

Future?

32



Edited by
Thalappil Pradeep

ATOMICALLY PRECISE
METAL NANOCLUSTERS




Molecular reactions

Reactions on clusters

Reactions between clusters

34



Inter-cluster reactions

pubs.acs.org/JACS

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Intercluster Reactions between Au,;5(SR),g and Ag.4(SR);o

K. R. Krishnadas, Atanu Ghosh, Ananya Baksi, Indranath Chakraborty,_} Ganapati Natarajan,
and Thalappil Pradeep™

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology
Madras, Chennai, 600 036, India

O Supporting Information

A+B->C+D
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Energies for the substitution reaction of (A) Au in Ag,,(SR)3,,
(B) Ag in Au,;(SR),g and (C) the overall reaction energies (in

eV) as a function of their positions in product clusters,
AU,AG44,(SR)30 and Au s, AQ,(SR)g fOr x=1

( A) Location of Au in

Au,Ag,, «(SR); AE/eV . .
Location of Ag in
Icosahedron (I) -0.72 (B) Au,,,Ag,(SR) AE/eV
-0.14
Dodecahedron: cube vertex Central atom (C) +0.71
(Dev) +0.23
Dodecahedron: cube face (D) -0.32 Icosahedron (I)
Staples (S) +0.44
Staples (S) -0.48
(C) Locations of Au in Au,Ag,,«(SR);,
Location of Ag in I D. D.s S
Auzs—xAgx(SR)IS
C -0.015 +0.564 +0.388 +0.226
I -0.486 +0.093 -0.083 -0.245
S -0.276 +0.303 +0.127 -0.035
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Ag,--Au,. experiments

K. R. Krishnadas et al. Nature Commun. 2016
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[AQ,5(DMBT) g+AU,5(PET) ]

DMBT PET
SH SH
’I—: H,;C” ; j ©/\/
g CHg
Q
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Evolution of alloy clusters from the dianionic adduct,
[Ag,sAUL5(DMBT)(PET) g]*
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within 5 min
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Optimized structure of [Ag,sAU,s(DMBT)5(PET),g]*
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How do we comprehend this?

Nomenclature
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1) Edge projection 2) Face Projection




Gana Natarajan et. al. JPC C 2015 46



Aspicules

a7



(D1-3,D2-3)-di(2-phenylethylthiolato),16(methylthiolato)-auro-25 aspicule(1-)
(D1-3,D2-3)-(PET),,(SMe),s-auro-25 aspicule(1-)

48



Ligand Exchange & Alloy y @ ~u

B\lllljzike(;(SRl)lo(SRzk isomerlg ) 4 Z
1

1, 5-(SBB)10, 3-(SCeH1)s
(i, 1, 2, x2)-palladoauro-25 asp [-1)
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(A) (B)

(€)

R-44(methylthiolato)-auro-102 aspicule(0)

R-(SMe),,-auro-102 aspicule(0) and L-(SMe),,-auro-102 aspicule(0) 20



ACCOUNTS

Interparticle Reactions: An Emerging Direction in Nanomaterials

Chemistry
K. R. Krishnadas, Ananya Baksi,” Atanu Ghosh, Ganapati Natarajan, Anirban Som,
and Thalappil Pradeep™

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) Indian Institute of
Technology Madras, Chennai 600 036, India

Agz&\’“’x(SR)m

Agys(SR) 4
O MO U CO 1y

CONSPECTUS: Nanoparticles exhibit a rich variety in terms of structure, composition, and properties. However, reactions
between them remain largely unexplored. In this Account, we discuss an emerging aspect of nanomaterials chemistry, namely,
interparticle reactions in solution phase, similar to reactions between molecules, involving atomically precise noble metal clusters.
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Kinetics of the exchange (monitored on the Ag,: side)
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CONDENSED MATTER PHYSICS

Rapid isotopic exchange in nanoparticles

Papri Chakraborty’, Abhijit Nag', Ganapati Natarajan', Nayanika Bandyopadhyay’,
Ganesan Paramasivam’, Manoj Kumar Panwar’, Jaydeb Chakrabarti?, Thalappil Pradeep’*

Rapid solution-state exchange dynamics in nanoscale pieces of matter is revealed, taking isotopically pure
atomically precise clusters as examples. As two isotopically pure silver clusters made of '°’Ag and '°°Ag
are mixed, an isotopically mixed cluster of the same entity results, similar to the formation of HDO, from
H,0 and D,O0. This spontaneous process is driven by the entropy of mixing and involves events at multiple
time scales.

Copyright © 2019
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A) [19Ag,5(DMBT)]"

a)

B) [19°AQg5(DMBT)g]°

b)

[ e

U U T T 1
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m/z m/z
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

m/z

m/z

ESI MS of A) 197Ag,.(DMBT),5 and B)!®Ag,-(DMBT),;. Insets shows the respective isotope patterns.
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Can clusters react with nanoparticles?
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Ag,: with Au nanoparticles
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Interface controls the reaction
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Computational insights

Products
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Reactions and new materials

MATE R IALS & Cite This: Chem. Mater. 2020, 32, 611-619 pubs.acs.org/cm

Intercluster Reactions Resulting in Silver-Rich Trimetallic
Nanoclusters

Esma Khatun, Papri Chakraborty, Betsy Rachel Jacob, Ganesan Paramasivam, Mohammad Bodiuzzaman,
Wakeel Ahmed Dar, and Thalappil Pradeep*

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of
Technology Madras, Chennai 600036, India

© Supporting Information

ABSTRACT: Herein, we present an intercluster reaction
leading to new trimetallic nanoclusters (NCs) using bimetallic
and monometallic NCs as reactants. Dithiol protected
bimetallic MAg,s(BDT),(PPh;), (BDT = 1,3-benzenedithiol
and M = Nj, Pd, or Pt) and monothiol protected Au,s(PET),s
(PET = 2-phenylethanethiol) were used as model NCs. A
mixture of trimetallic MAu,Ag,s_(BDT),,(PPh;), (x = 1—
12) and bimetallic Ag,Au,s_(PET);5 (x = 1=7) NCs were
formed during the reaction as understood from time-
dependent electrospray ionization mass spectrometry (ESI
MS). Detailed studies of intercluster reaction between
Ag,o(BDT),,(PPh;), and Au,s(PET),s were also performed. Although both MAg,s(BDT),,(PPh;), (M = Ag, Ni, Pd, or
Pt) and Au,s(PET),4 contain 13 atoms icosahedral core, only a maximum of 12 Au doped NCs were formed for the former as a




Reactions leading to co-crystals

W & Cite This: ACS Nano 2019, 13, 13365—13373 www.acsnano.org

Interparticle Reactions between Silver
Nanoclusters Leading to Product Cocrystals by
Selective Cocrystallization

Wakeel Ahmed Dar,” Mohammad Bodiuzzaman,” Debasmita Ghosh, Ganesan Paramasivam,
Esma Khatun, Korath Shivan Sugi, and Thalappil Pradeep™

Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras,
Chennai 600036, India

© Supporting Information

ABSTRACT: We present an example of an interparticle

Ag, Ag oF P
reaction between atomically precise nanoclusters (NCs) of S | v WA
the same metal, resulting in entirely different clusters. In ot 8 AT . }:-C"?\

& » B

L i - v
detail, the clusters [Ag,,(TBT)g(TFA);(CH;CN)]* (TBT = ) p — ::v.( '1{;{3*
tert-butylthiolate, TFA = trifluoroacetate, CH;CN = ‘ @ &!3 Ag.Shel @ 7 At NC

NC
acetonitrile) and [Ags(TPP),,H,s]>" (TPP = triphenyl- ez » b A8 Ag'A’
phosphine) abbreviated as Ag,, and Ag respectively, f— Agy B\ - A _N-.;:,(;-.,
react leading to [Ag;s(TBT)s(TFA),(CH;CN);Cl]* and . 5 i & g :‘-‘:'qy
[Ag,,(TBT)s(TFA),(CH;CN);Cl]*, abbreviated as Ag;s  Reactant :
and Ag,,, respectively. The two product NCs crystallize = Nanoclusters (NCs) Reaction Intermediates Co-crystal

together as both possess the same metal chalcogenolate



Supramolecular chemistry

Papri Chakraborty, et,. al. ACS Nano®2018
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Figure 1. A) (a) Full range ESI MS, (b) experimental and calculated isotope patterns and (c) DFT optimized structure of

[Agy(BDT),]* cluster. B) (a) ESI MS of [Ag,o(BDT)5(Cep),l® (n=1-4) complexes, (b) experimental and calculated igptope
patterns of [Ag,q(BDT),,(Cq),]3 and (c) schematic of the possible structure of [Ag,o(BDT),5(Cgo)al®



Assemblies and superstructures
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Atomically precise nanocluster assemblies encapsulating

plasmonic gold nanorods

[Ag,.(pMBA), *
[Ag,(PMBA), I*
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30] =

GNR@pMBA L/* \

o pMBA GNR@Ag,,

Absorbance (a. u.)
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Wavelength (nm)

20 nm

Chakraborty, A. et al., Angew. Chem. Int. Ed. 2018, 57, 6522—-6526.
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3D morphological analysis

5 nm
=
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Works for Au,-,(pMBA),, and aqueous solvent
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Co-crystals
Ag,, and Ag,s with the same shell
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Isomerism in supramolecular adducts

Abhijit Nag, et al. JACS 2018 73
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XNCD_*

a) Isomer 1
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T-Ag2(BDT);,NCD;

C-Ag2(BDT),,NCD,

T-Ag2(BDT)1,NCD,
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Where are they taking us to?

=@

Biopolymer-reinforced synthetic granular
nanocomposites for affordable point-of-use

water purification

Mohan Udhaya Sankar?!, Sahaja Aigal‘, Shihabudheen M. Maliyekkal', Amrita Chaudhary, Anshup, Avula Anil Kumar,

Kamalesh Chaudhari, and Thalappil Pradeep®
Unit of Nanoscience and Thematic Unit of Ex
Edited by Eric Hoek, University of California,

Creation of affordable materials for cons
water is one of the most promising ways
drinking water for all. Combining the
composites to scavenge toxic spedies
other contaminants along with the albx
affordable, all-inclusive drinking water
without electricity. The critical proble:
synthesis of stable materials that can
uously in the presence of complex s
drinking water that deposit and caus
surfaces. Here we show that such con
be synthesized in a simple and effactive |
out the use of electrical power. The nz
sandike properties, such as higher shea
forms. These materials have been used
water purifier to deliver dean drinking 1
ily. The ability to prepare nanostructu
ambient temperature has wide relevz
water purification.

T e

hybrid | green | appropriate technology | frugal science | developing world
Raoeunlte and Niernceinn

M. Udhaya Sankar, et. al. Proc. Natl. Acad. Sci., 110 (2013) 8459-8464.

Madras, Chennal 600 036, India
({received for review November 21, 2012)

vailable; and {c) continued retention
matrix is difficult.

-ate aunique family of nanocrystalline
n granular composite materials pre-
ature through an aqueous route. The
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Range of materials, their affordability and safety

A. Anil Kumar, et. al. Adv. Mater., 29 (2016) 1604260.
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Clean water for everyone

ACS Sustainable Chemistry & Engineering Editorial,
December 2016







Evolution of materials to products

3/

Community-
Community-scale scale
atmospheric water A contaminant
harvesting 0 Catalysis S rariovall
TiO,-assisted
photocatalysis
Atmospheric 25 Purification
Water oxide-based mnﬂn::dals
An atmospheric R e i
water generator with Harvesting =3 - B

a capacity of
400 liters per day

= 3
o

o

.0

Nanoparticle-based
arsenic filtration

(Company: VayuJal) Confined pump used by
(ref 36) A il school children in
by West Bengal
Nmoporyr!lols (Company:
o W Confined InnoNano Research)
: s} W, ~composes metastable
g::rd::;:::’: - Pz i, ;:\;/.},&5;’0? 2-line ferrihydrite
e feem
nanobrushes dendrimer (rof 32‘;°“°se
. . (ref 10)
Disinfection - 2 Livebacteria
Solar water w\'@‘ “ (ref 31)
disinfection \ \QS
using MoS,
nanosheets "’ ’ ‘
Visile igns "y
Community- ? PARIRE
scale e
desalination ' Community-scale drinking water

CDI machine for rural areas
(Company: InnoDI)

(ref 35)

81

Ankit Nagar and T. Pradeep 14(2020). ACS Nano, 6420-6435



Smart water purifiers and big data

Smart Water Purifiers linked to loT Global Map of Water Health
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Sensors and new opportunities
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Water quality measurement — In the pipeline



Cluster-based metal ion sensing
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Decrease in the absorption of Au,: as a biofilm is dipped into the cluster
solution. Inset: Free standing quantum cluster loaded film in visible light and

UV light.

Anu George et al. ACS Applied Materials & Interfaces, 2012



Approaching detection limits of tens of Hg?*

—

Atanu Ghosh et al. Anal. Chem. 2014.
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Mercury quenching experiment using nanofiber

—
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Jana et. al, Inorganic Chemistry (2022)






Thermal stability
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New electrodes - Aligned nanoplates of CogSg
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Electrospray deposition
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Sensing

a) _— b) 025
0.28 - 3.75 ppb y =2.36E-9x + 2.33E-8
r2=0.99
0.20 -
5021 - .
= <;"'Lo.15 .
- —
o =
g 0.14 | 3
a = 0.10
(3]
0.07 |
0.05 -
0.00 1 0.00
0.15 0.30 0.45 0.60 0.75 0 10 20 30 40 50 60 70 80
Potential (V) Concentration (ppb)
C) o010 d)0.10
— Tapwater 100 ppb
—— 5 ppb
—— 10 ppb 0.08 -
0084 __ 55p5pb
oy —— 50 ppb —_
L | — oo < 0.06 -
+ 0.05 -
c
2
S 5 0.04 1
© 0.03 | ©
0.02
0.00 -] . —— A\
T T T T 0'00
0.15 0.30 0.45 0.60 0.75

Ca’ Pb?* Fe?* Fe**Mn?* Cu?"As™ As™ As™
Potential (V)



Working electrode

Vertically aligned nanoplates

Glassy carbon dropcasted with ESD of Co, cluster( WE)

Working electrode _
-~

SuM

Vertically aligned nanoplates

Handheld Potentiostat

Anagha Jose et al. ACS Materials Lett., 5 (2023) 893-899. 93



Arsenic poisoning across the world
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India’s water Is being monitored
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AQy; AUAQ s Ag;3Cu, AUAgQ;,Cu,

Vivek Yadayv, et. al., Nature Communications, 2025
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Structure of M,;, Nanoclusters

AuU@AQ4

Au@Aglz@CU4



[Ag¢»S12(CBT);3,] Nanocluster

Largest molecule with carboranes sggfar. .

Jana et al., manuscript under preparation



« Atomically precise clusters are a category of new materials
« They are molecules - properties, nomenclature,...

« Clusters are thermally stable up to 400° C.

* They exhibit useful applications

« Atomic precision across the periodic table

* Anera cluster-based materials is being born
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Larger clusters - TEM
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CDMS of viruses and nanoparticles
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Weathering of Minerals in Microdroplets
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Spontaneous Weathering of Natural Minerals in
Charged Water Microdroplets Forms Nanomaterials
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Spoorthi, et. al., Science, 384 (2024) 1012-1017. 105



Ruby, Fused Alumina
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Mechanism of nanoparticle formation

Physical effects

e
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Nanomechanical Properties of Cu, Nanoclusters

a)
9-HS-1,2-C,BHyy
9-HS-1,7-C,BHy;
Isomorphic crystals
Cus(oCBT)s e - CUs(MCBT)4
b)
d) Trigonal (P321) Hexagonal e} Monoclinic {P2/c) Parallelepiped

Z=3 =4
V=3333.4 A" (001) V =4400.1 A
p = 1.428 Mg/m? N, 4 p = 1.442 Mg/m®

Amoghavasha Ramachandra Kini, et. al., Chem. Mater. 2025 118
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Catalysis by Ag,,Cu, Nanoclusters

% Direct N%-arylation of Guanine with Phenylboronic Acid Catalyzed by

Cu-doped Silver Nanocluster

0 HOL OH 0
N N
NH NH
</ ' /* + Ag13CU4 NC e </ | /*
” N NH, KOH, DMSO/H,0 N N NH,

Guanine
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Biosensor Design

1t Generation Design (Mediated Electrochemistry)

Oxidase NT-26 Aio Cytochrome C

2"d Generation Design (Direct Electron Transfer)

Recombinant Arsenite
Oxidase NT-26 Aio

Horse Heart Aldrithiol

[ ——

Bio-nano Consulting & Imperial College, London

—.. | Buffer: pH 7-8

Low-cost Gold sputtered
thin film on PET substrate

low-cost nanostructured

electrodes which interact
directly with enzyme (e.qg.
graphene or CNT). '

=

BioeNano
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International Edition Chem:e

Sub-zeptomolar detection &

Ex490 nm

Featured in:

The Hindu, Telegraph, Times of India, etc.
C&E News

and many others

Ammu Mathew, et al. Angew. Chem. Int. Ed. 2012
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How do we know that they exist?

Table 1
materials

Landmark events in the history of mass spectrometry and their importance in enabling the characterization of

Progress in instrumentation

1912

1918
1936-37

1946
1952
1955
1956
1953-58
1962
1966
1967

1968
1974

1975
1978
1981
1987
1999
2004

Measurement of m/z values
by Thomson®

Electron ionization'*’
Secondary ion MS'*

Time of flight'*’
Double-focussing instruments
Advanced TOF'!

GC-MS,”*® high-resolution MS'#
Quadrupole analyzers'*

Ton mobility'**

Chemical ionization!43

Tandem MS'#®

140

Electrospray ionization (ESI)'*

Fourier transform (FT) Ion
cyclotron resonance'?,
Atmospheric pressure
chemical ionization'>
Surface-induced dissociation'®!
Triple quadruple'>

Fast atom bombardment MS'*?
MALDI!154

Orbitrap'4

Desorption electrospray
ionization'>

Systems studied by MS

Isotopes of elements
Atomic weights using MS®

1940s Organic mass

L spectrometry, Mixture of
organic analytes could be
separated by GC-MS®

1980s high molecular-
weight polymers, peptides,
proteins, nucleic acids, ESI
for macromolecules®

1996 Analysis of intact live
viruses'*®

1985 Discovery

— fullerenes by laser-induced
vaporization®®
1996 LDI for
characterization of thiol-
protected clusters*’
2008 MS  of intact

Auys(PET) g clusters®

of |

early
studies by
MS

Analysis of
organic
molecules

MS in
L_proteomics
and

living cells

Analysis of
rmaterials
with MS

2018 MS of Au-pNPs'** |

Resolution®'3*"

= 100

Aston (130)°

— 1,000

TOF
<— (4000-5000
at m/z ~100)"*’

— 10,000

W geometry
ortho-TOF
(70,000
at m/z 316)'Y

1,00,000
Orbitrap

(6,00,000
atm/z 195)°

10,00,000

FTICR
(20,00,000 at
m/z 66,000)'7

Mass range
(m/z)" ™

—_— 100 €—
Aston
(~100)°

— 1,000

Magnetic
sector
(~2000)"®

= 10,000

< FTICR
(~29,000)"*

—1,00,000

<— MALDI
TOF

(~2,00,000)"%*

= 10,00,000

<— Cryo
MALDI TOF
(~20,00,000)">°

Charge detection MS

“Does not strictly correspond to the time evolution presented in the left column

Chakraborty and Pradeep NPG Asia Materials (2019) 11:48
https://doi.org/10.1038/541427-019-0149-3
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Left: transmission electron microscope image of a CdSe nanocrystal. Centre: Atomic structure of

a nanocrystal. Right: Electronic states in a core-shell quantum dot, with the dot itself in the
centre bracketed by a wide-bandgap shell.

A. L. Efros and L.E. Brus, ACS Nano 15, 6192 (2021).




Nanoclusters Iin colloidal assemblies

a)

S—f 4
N/ bH3o

Agdd Te-O bond 4Nat

- monolayer thick
_shell

¥«

I(=1m .4; “‘1

Som, A. et al., Adv. Mater. 2016, 28, 2827-2833

Nonappa et al., Angew. Chem. Int. Ed. 2016, 55, 16035-16038. 126
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Absorbance

1.00

0.75 -

0.50 4

0.25 +

N

3170.42 [Age2S12(CBT)3,)*
— Experimental
- Simulated

- 1 v 1 ’ 1
3165 3170 3175
m/z

0.00

T T T T T ' ; ’
400 500 600 700 800
Wavelength (nm)

3000 4000 5000
m/z 128



Gas phase

International Journal of Muss Spectrometry and Ion Processes, 74 (1986) 33-41 33 Tt
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

Au-Cluster

MASS DISTRIBUTIONS OF NEGATIVE CLUSTER IONS OF
COPPER, SILVER, AND GOLD

arb. units

I. KATAKUSE, T. ICHIHARA
Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560 (Japan)

Yield Log(I)
o

Y. FUJITA, T. MATSUO, T. SAKURAI and H. MATSUDA 2r “bosoces

......

Institute of Physics, College of General Education, Osaka University, Toyonaka,
Osaka 560 (Japan) . ' ‘ ‘ .
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Fig. 2. Size distributions of gold clusters, (Au), (upper curve) and (Au), (lower curve),
plotted on a logarithmic scale.



